Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):4877–4883. doi: 10.1128/jvi.70.8.4877-4883.1996

The concentration of Ca2+ that solubilizes outer capsid proteins from rotavirus particles is dependent on the strain.

M C Ruiz 1, A Charpilienne 1, F Liprandi 1, R Gajardo 1, F Michelangeli 1, J Cohen 1
PMCID: PMC190437  PMID: 8763990

Abstract

It has been previously shown that rotavirus maturation and stability of the outer capsid are calcium-dependent processes. More recently, it has been hypothesized that penetration of the cell membrane is also affected by conformational changes of the capsid induced by Ca2+. In this study, we determined quantitatively the critical concentration of calcium ion that leads to solubilization of the outer capsid proteins VP4 and VP7. Since this critical concentration is below or close to trace levels of Ca2+, we have used buffered solutions based on ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and Ca-EGTA. This method allowed us to show a very high variability of the free [Ca2+] needed to stabilize, at room temperature, the outer capsid of several rotavirus strains. This concentration is about 600 nM for the two bovine strains tested (RF and UK), 100 nM for the porcine strain OSU, and only 10 to 20 nM for the simian strain SA11. Titration of viral infectivity after incubation in buffer of defined [Ca2+] confirmed that the loss of infectivity occurs at different [Ca2+] for these three strains. For the bovine strain, the cleavage of VP4 by trypsin has no significant effect on the [Ca2+] that solubilizes outer shell proteins. The outer layer (VP7) of virus-like particles (VLP) made of recombinant proteins VP2, VP6, and VP7 (VLP2/6/7) was also solubilized by lowering the [Ca2+]. The critical concentration of Ca2+ needed to solubilize VP7 from VLP2/6/7 made of protein from the bovine strain is close to the concentration needed for the corresponding virus. Genetic analysis of this phenotype in a set of reassortant viruses from two parental strains having the phenotypes of strains OSU (porcine) and UK (bovine) confirmed that this property of viral particles is probably associated with the gene coding for VP7. The analysis of VLP by reverse genetics might allow the identification of the region(s) essential for calcium binding.

Full Text

The Full Text of this article is available as a PDF (583.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady J. N., Winston V. D., Consigli R. A. Dissociation of polyoma virus by the chelation of calcium ions found associated with purified virions. J Virol. 1977 Sep;23(3):717–724. doi: 10.1128/jvi.23.3.717-724.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen D. Y., Estes M. K., Ramig R. F. Specific interactions between rotavirus outer capsid proteins VP4 and VP7 determine expression of a cross-reactive, neutralizing VP4-specific epitope. J Virol. 1992 Jan;66(1):432–439. doi: 10.1128/jvi.66.1.432-439.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ciarlet M., Hidalgo M., Liprandi F. Cross-reactive, serotype- and monotype-specific neutralization epitopes on VP7 of serotype G3 and G5 porcine rotavirus strains. Arch Virol. 1996;141(3-4):601–614. doi: 10.1007/BF01718320. [DOI] [PubMed] [Google Scholar]
  4. Ciarlet M., Ludert J. E., Liprandi F. Comparative amino acid sequence analysis of the major outer capsid protein (VP7) of porcine rotaviruses with G3 and G5 serotype specificities isolated in Venezuela and Argentina. Arch Virol. 1995;140(3):437–451. doi: 10.1007/BF01718422. [DOI] [PubMed] [Google Scholar]
  5. Cohen J., Laporte J., Charpilienne A., Scherrer R. Activation of rotavirus RNA polymerase by calcium chelation. Arch Virol. 1979;60(3-4):177–186. doi: 10.1007/BF01317489. [DOI] [PubMed] [Google Scholar]
  6. Crawford S. E., Labbé M., Cohen J., Burroughs M. H., Zhou Y. J., Estes M. K. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol. 1994 Sep;68(9):5945–5952. doi: 10.1128/jvi.68.9.5945-5952.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dormitzer P. R., Greenberg H. B. Calcium chelation induces a conformational change in recombinant herpes simplex virus-1-expressed rotavirus VP7. Virology. 1992 Aug;189(2):828–832. doi: 10.1016/0042-6822(92)90616-w. [DOI] [PubMed] [Google Scholar]
  8. Dormitzer P. R., Ho D. Y., Mackow E. R., Mocarski E. S., Greenberg H. B. Neutralizing epitopes on herpes simplex virus-1-expressed rotavirus VP7 are dependent on coexpression of other rotavirus proteins. Virology. 1992 Mar;187(1):18–32. doi: 10.1016/0042-6822(92)90291-v. [DOI] [PubMed] [Google Scholar]
  9. Durham A. C., Hendry D. A., Von Wechmar M. B. Does calcium ion binding control plant virus disassembly? Virology. 1977 Apr;77(2):524–533. doi: 10.1016/0042-6822(77)90478-0. [DOI] [PubMed] [Google Scholar]
  10. Estes M. K., Cohen J. Rotavirus gene structure and function. Microbiol Rev. 1989 Dec;53(4):410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Franco M. A., Prieto I., Labbé M., Poncet D., Borras-Cuesta F., Cohen J. An immunodominant cytotoxic T cell epitope on the VP7 rotavirus protein overlaps the H2 signal peptide. J Gen Virol. 1993 Dec;74(Pt 12):2579–2586. doi: 10.1099/0022-1317-74-12-2579. [DOI] [PubMed] [Google Scholar]
  12. Gallegos C. O., Patton J. T. Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology. 1989 Oct;172(2):616–627. doi: 10.1016/0042-6822(89)90204-3. [DOI] [PubMed] [Google Scholar]
  13. Haiech J., Sallantin J. Computer search of calcium binding sites in a gene data bank: use of learning techniques to build an expert system. Biochimie. 1985 May;67(5):555–560. doi: 10.1016/s0300-9084(85)80276-5. [DOI] [PubMed] [Google Scholar]
  14. Irurzun A., Arroyo J., Alvarez A., Carrasco L. Enhanced intracellular calcium concentration during poliovirus infection. J Virol. 1995 Aug;69(8):5142–5146. doi: 10.1128/jvi.69.8.5142-5146.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Konarska M. M., Sharp P. A. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell. 1987 Jun 19;49(6):763–774. doi: 10.1016/0092-8674(87)90614-3. [DOI] [PubMed] [Google Scholar]
  16. Labbé M., Charpilienne A., Crawford S. E., Estes M. K., Cohen J. Expression of rotavirus VP2 produces empty corelike particles. J Virol. 1991 Jun;65(6):2946–2952. doi: 10.1128/jvi.65.6.2946-2952.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Larson S. M., Antczak J. B., Joklik W. K. Reovirus exists in the form of 13 particle species that differ in their content of protein sigma 1. Virology. 1994 Jun;201(2):303–311. doi: 10.1006/viro.1994.1295. [DOI] [PubMed] [Google Scholar]
  18. Liddington R. C., Yan Y., Moulai J., Sahli R., Benjamin T. L., Harrison S. C. Structure of simian virus 40 at 3.8-A resolution. Nature. 1991 Nov 28;354(6351):278–284. doi: 10.1038/354278a0. [DOI] [PubMed] [Google Scholar]
  19. Ludert J. E., Michelangeli F., Gil F., Liprandi F., Esparza J. Penetration and uncoating of rotaviruses in cultured cells. Intervirology. 1987;27(2):95–101. doi: 10.1159/000149726. [DOI] [PubMed] [Google Scholar]
  20. Maass D. R., Atkinson P. H. Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures. J Virol. 1990 Jun;64(6):2632–2641. doi: 10.1128/jvi.64.6.2632-2641.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Michelangeli F., Liprandi F., Chemello M. E., Ciarlet M., Ruiz M. C. Selective depletion of stored calcium by thapsigargin blocks rotavirus maturation but not the cytopathic effect. J Virol. 1995 Jun;69(6):3838–3847. doi: 10.1128/jvi.69.6.3838-3847.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Michelangeli F., Ruiz M. C., del Castillo J. R., Ludert J. E., Liprandi F. Effect of rotavirus infection on intracellular calcium homeostasis in cultured cells. Virology. 1991 Apr;181(2):520–527. doi: 10.1016/0042-6822(91)90884-e. [DOI] [PubMed] [Google Scholar]
  23. Nandi P., Charpilienne A., Cohen J. Interaction of rotavirus particles with liposomes. J Virol. 1992 Jun;66(6):3363–3367. doi: 10.1128/jvi.66.6.3363-3367.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Poruchynsky M. S., Maass D. R., Atkinson P. H. Calcium depletion blocks the maturation of rotavirus by altering the oligomerization of virus-encoded proteins in the ER. J Cell Biol. 1991 Aug;114(4):651–656. doi: 10.1083/jcb.114.4.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rao Z., Handford P., Mayhew M., Knott V., Brownlee G. G., Stuart D. The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell. 1995 Jul 14;82(1):131–141. doi: 10.1016/0092-8674(95)90059-4. [DOI] [PubMed] [Google Scholar]
  26. Ruiz M. C., Alonso-Torre S. R., Charpilienne A., Vasseur M., Michelangeli F., Cohen J., Alvarado F. Rotavirus interaction with isolated membrane vesicles. J Virol. 1994 Jun;68(6):4009–4016. doi: 10.1128/jvi.68.6.4009-4016.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shahrabadi M. S., Babiuk L. A., Lee P. W. Further analysis of the role of calcium in rotavirus morphogenesis. Virology. 1987 May;158(1):103–111. doi: 10.1016/0042-6822(87)90242-x. [DOI] [PubMed] [Google Scholar]
  28. Shahrabadi M. S., Lee P. W. Bovine rotavirus maturation is a calcium-dependent process. Virology. 1986 Jul 30;152(2):298–307. doi: 10.1016/0042-6822(86)90133-9. [DOI] [PubMed] [Google Scholar]
  29. Shaw A. L., Rothnagel R., Chen D., Ramig R. F., Chiu W., Prasad B. V. Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell. 1993 Aug 27;74(4):693–701. doi: 10.1016/0092-8674(93)90516-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shirley J. A., Beards G. M., Thouless M. E., Flewett T. H. The influence of divalent cations on the stability of human rotavirus. Arch Virol. 1981;67(1):1–9. doi: 10.1007/BF01314596. [DOI] [PubMed] [Google Scholar]
  31. Skern T., Torgersen H., Auer H., Kuechler E., Blaas D. Human rhinovirus mutants resistant to low pH. Virology. 1991 Aug;183(2):757–763. doi: 10.1016/0042-6822(91)91006-3. [DOI] [PubMed] [Google Scholar]
  32. Suzuki H., Konno T., Numazaki Y. Electron microscopic evidence for budding process-independent assembly of double-shelled rotavirus particles during passage through endoplasmic reticulum membranes. J Gen Virol. 1993 Sep;74(Pt 9):2015–2018. doi: 10.1099/0022-1317-74-9-2015. [DOI] [PubMed] [Google Scholar]
  33. Tian P., Estes M. K., Hu Y., Ball J. M., Zeng C. Q., Schilling W. P. The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J Virol. 1995 Sep;69(9):5763–5772. doi: 10.1128/jvi.69.9.5763-5772.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tian P., Hu Y., Schilling W. P., Lindsay D. A., Eiden J., Estes M. K. The nonstructural glycoprotein of rotavirus affects intracellular calcium levels. J Virol. 1994 Jan;68(1):251–257. doi: 10.1128/jvi.68.1.251-257.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tosser G., Labbé M., Brémont M., Cohen J. Expression of the major capsid protein VP6 of group C rotavirus and synthesis of chimeric single-shelled particles by using recombinant baculoviruses. J Virol. 1992 Oct;66(10):5825–5831. doi: 10.1128/jvi.66.10.5825-5831.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tsien R., Pozzan T. Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol. 1989;172:230–262. doi: 10.1016/s0076-6879(89)72017-6. [DOI] [PubMed] [Google Scholar]
  37. Weiss C., Clark H. F. Rapid inactivation of rotaviruses by exposure to acid buffer or acidic gastric juice. J Gen Virol. 1985 Dec;66(Pt 12):2725–2730. doi: 10.1099/0022-1317-66-12-2725. [DOI] [PubMed] [Google Scholar]
  38. Yeager M., Berriman J. A., Baker T. S., Bellamy A. R. Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J. 1994 Mar 1;13(5):1011–1018. doi: 10.1002/j.1460-2075.1994.tb06349.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhou Y. J., Burns J. W., Morita Y., Tanaka T., Estes M. K. Localization of rotavirus VP4 neutralization epitopes involved in antibody-induced conformational changes of virus structure. J Virol. 1994 Jun;68(6):3955–3964. doi: 10.1128/jvi.68.6.3955-3964.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES