Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):4919–4926. doi: 10.1128/jvi.70.8.4919-4926.1996

Among all human T-cell leukemia virus type 1 proteins, tax, polymerase, and envelope proteins are predicted as preferential targets for the HLA-A2-restricted cytotoxic T-cell response.

C Pique 1, F Connan 1, J P Levilain 1, J Choppin 1, M C Dokhélar 1
PMCID: PMC190442  PMID: 8763995

Abstract

The human T-cell leukemia virus type 1 (HTLV-1) is a human retrovirus associated with two diseases for which no successful treatment is yet available; the development of a vaccine is therefore an important issue. Since HTLV-1 is a persistent virus, an efficient vaccine will probably require a cytotoxic T-lymphocyte (CTL) response in addition to the production of antibodies. To identify potential CTL epitopes, we have selected, within all of the HTLV-1 proteins, nonapeptides containing anchor residues required for association with HLA-A2 molecules (residues at positions 2 and 9), which is the most frequently occurring A allele in all human populations. A set of 111 peptides was synthetized and tested in vitro in two assembly assays using processing-defective T2 cells. Anchor motifs selected were those containing two major anchor residues (L2/M2/12-V9/L9/I9) (one letter amino-acid code) and those including tolerated anchor residues (V2/A2/T2 and/or A9/M9/T9). The analysis of the binding capacity of the peptides confirms the high efficiency of the L2-V9 anchor motif and shows that a systematic research of potential binding peptides should exclude peptides containing known detrimental residues rather than select only peptides with known favored residues. We show that 39 peptides representative of all the HTLV-1 proteins are able to bind to HLA-A2 molecules. Strong binder peptides which are very likely good CTL epitopes were identified in three HTLV-1 proteins, Tax, envelope, and polymerase. Three of the strong binder peptides correspond to previously described HLA-A2-restricted CTL epitopes in the Tax protein, and two others are localized in a domain of the viral envelope recognized by natural neutralizing antibodies. This latter result has important implications for the development of an anti-HTLV-1 vaccine.

Full Text

The Full Text of this article is available as a PDF (254.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba E., Nakamura M., Ohkuma K., Kira J., Tanaka Y., Nakano S., Niho Y. A peptide-based human T cell leukemia virus type I vaccine containing T and B cell epitopes that induces high titers of neutralizing antibodies. J Immunol. 1995 Jan 1;154(1):399–412. [PubMed] [Google Scholar]
  2. Baba E., Nakamura M., Tanaka Y., Kuroki M., Itoyama Y., Nakano S., Niho Y. Multiple neutralizing B-cell epitopes of human T-cell leukemia virus type 1 (HTLV-1) identified by human monoclonal antibodies. A basis for the design of an HTLV-1 peptide vaccine. J Immunol. 1993 Jul 15;151(2):1013–1024. [PubMed] [Google Scholar]
  3. Bangham C. R., Daenke S., Phillips R. E., Cruickshank J. K., Bell J. I. Enzymatic amplification of exogenous and endogenous retroviral sequences from DNA of patients with tropical spastic paraparesis. EMBO J. 1988 Dec 20;7(13):4179–4184. doi: 10.1002/j.1460-2075.1988.tb03314.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bastian I., Gardner J., Webb D., Gardner I. Isolation of a human T-lymphotropic virus type I strain from Australian aboriginals. J Virol. 1993 Feb;67(2):843–851. doi: 10.1128/jvi.67.2.843-851.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciminale V., Pavlakis G. N., Derse D., Cunningham C. P., Felber B. K. Complex splicing in the human T-cell leukemia virus (HTLV) family of retroviruses: novel mRNAs and proteins produced by HTLV type I. J Virol. 1992 Mar;66(3):1737–1745. doi: 10.1128/jvi.66.3.1737-1745.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connan F., Hlavac F., Hoebeke J., Guillet J. G., Choppin J. A simple assay for detection of peptides promoting the assembly of HLA class I molecules. Eur J Immunol. 1994 Mar;24(3):777–780. doi: 10.1002/eji.1830240344. [DOI] [PubMed] [Google Scholar]
  7. Daenke S., Kermode A. G., Hall S. E., Taylor G., Weber J., Nightingale S., Bangham C. R. High activated and memory cytotoxic T-cell responses to HTLV-1 in healthy carriers and patients with tropical spastic paraparesis. Virology. 1996 Mar 1;217(1):139–146. doi: 10.1006/viro.1996.0101. [DOI] [PubMed] [Google Scholar]
  8. Delamarre L., Pique C., Pham D., Tursz T., Dokhélar M. C. Identification of functional regions in the human T-cell leukemia virus type I SU glycoprotein. J Virol. 1994 Jun;68(6):3544–3549. doi: 10.1128/jvi.68.6.3544-3549.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delaporte E., Monplaisir N., Louwagie J., Peeters M., Martin-Prével Y., Louis J. P., Trebucq A., Bedjabaga L., Ossari S., Honoré C. Prevalence of HTLV-I and HTLV-II infection in Gabon, Africa: comparison of the serological and PCR results. Int J Cancer. 1991 Sep 30;49(3):373–376. doi: 10.1002/ijc.2910490310. [DOI] [PubMed] [Google Scholar]
  10. Elovaara I., Koenig S., Brewah A. Y., Woods R. M., Lehky T., Jacobson S. High human T cell lymphotropic virus type 1 (HTLV-1)-specific precursor cytotoxic T lymphocyte frequencies in patients with HTLV-1-associated neurological disease. J Exp Med. 1993 Jun 1;177(6):1567–1573. doi: 10.1084/jem.177.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Engelhard V. H. Structure of peptides associated with MHC class I molecules. Curr Opin Immunol. 1994 Feb;6(1):13–23. doi: 10.1016/0952-7915(94)90028-0. [DOI] [PubMed] [Google Scholar]
  12. Falk K., Rötzschke O., Deres K., Metzger J., Jung G., Rammensee H. G. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med. 1991 Aug 1;174(2):425–434. doi: 10.1084/jem.174.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  14. Franchini G., Wong-Staal F., Gallo R. C. Human T-cell leukemia virus (HTLV-I) transcripts in fresh and cultured cells of patients with adult T-cell leukemia. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6207–6211. doi: 10.1073/pnas.81.19.6207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garry R. F. New evidence for involvement of retroviruses in Sjögren's syndrome and other autoimmune diseases. Arthritis Rheum. 1994 Apr;37(4):465–469. doi: 10.1002/art.1780370405. [DOI] [PubMed] [Google Scholar]
  16. Gessain A., Boeri E., Yanagihara R., Gallo R. C., Franchini G. Complete nucleotide sequence of a highly divergent human T-cell leukemia (lymphotropic) virus type I (HTLV-I) variant from melanesia: genetic and phylogenetic relationship to HTLV-I strains from other geographical regions. J Virol. 1993 Feb;67(2):1015–1023. doi: 10.1128/jvi.67.2.1015-1023.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gessain A., Louie A., Gout O., Gallo R. C., Franchini G. Human T-cell leukemia-lymphoma virus type I (HTLV-I) expression in fresh peripheral blood mononuclear cells from patients with tropical spastic paraparesis/HTLV-I-associated myelopathy. J Virol. 1991 Mar;65(3):1628–1633. doi: 10.1128/jvi.65.3.1628-1633.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gout O., Baulac M., Gessain A., Semah F., Saal F., Périès J., Cabrol C., Foucault-Fretz C., Laplane D., Sigaux F. Rapid development of myelopathy after HTLV-I infection acquired by transfusion during cardiac transplantation. N Engl J Med. 1990 Feb 8;322(6):383–388. doi: 10.1056/NEJM199002083220607. [DOI] [PubMed] [Google Scholar]
  19. Hall W. W. Human T cell lymphotropic virus type I and cutaneous T cell leukemia/lymphoma. J Exp Med. 1994 Nov 1;180(5):1581–1585. doi: 10.1084/jem.180.5.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hunt D. F., Henderson R. A., Shabanowitz J., Sakaguchi K., Michel H., Sevilir N., Cox A. L., Appella E., Engelhard V. H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science. 1992 Mar 6;255(5049):1261–1263. doi: 10.1126/science.1546328. [DOI] [PubMed] [Google Scholar]
  21. Hunter E., Swanstrom R. Retrovirus envelope glycoproteins. Curr Top Microbiol Immunol. 1990;157:187–253. doi: 10.1007/978-3-642-75218-6_7. [DOI] [PubMed] [Google Scholar]
  22. Ito Y. The epidemiology of human T-cell leukemia/lymphoma virus. Curr Top Microbiol Immunol. 1985;115:99–112. doi: 10.1007/978-3-642-70113-9_7. [DOI] [PubMed] [Google Scholar]
  23. Itoyama Y., Minato S., Kira J., Goto I., Sato H., Okochi K., Yamamoto N. Spontaneous proliferation of peripheral blood lymphocytes increased in patients with HTLV-I-associated myelopathy. Neurology. 1988 Aug;38(8):1302–1307. doi: 10.1212/wnl.38.8.1302. [DOI] [PubMed] [Google Scholar]
  24. Jacobson S., Shida H., McFarlin D. E., Fauci A. S., Koenig S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature. 1990 Nov 15;348(6298):245–248. doi: 10.1038/348245a0. [DOI] [PubMed] [Google Scholar]
  25. Kannagi M., Harada S., Maruyama I., Inoko H., Igarashi H., Kuwashima G., Sato S., Morita M., Kidokoro M., Sugimoto M. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int Immunol. 1991 Aug;3(8):761–767. doi: 10.1093/intimm/3.8.761. [DOI] [PubMed] [Google Scholar]
  26. Kannagi M., Shida H., Igarashi H., Kuruma K., Murai H., Aono Y., Maruyama I., Osame M., Hattori T., Inoko H. Target epitope in the Tax protein of human T-cell leukemia virus type I recognized by class I major histocompatibility complex-restricted cytotoxic T cells. J Virol. 1992 May;66(5):2928–2933. doi: 10.1128/jvi.66.5.2928-2933.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kast W. M., Brandt R. M., Sidney J., Drijfhout J. W., Kubo R. T., Grey H. M., Melief C. J., Sette A. Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol. 1994 Apr 15;152(8):3904–3912. [PubMed] [Google Scholar]
  28. Kinoshita T., Shimoyama M., Tobinai K., Ito M., Ito S., Ikeda S., Tajima K., Shimotohno K., Sugimura T. Detection of mRNA for the tax1/rex1 gene of human T-cell leukemia virus type I in fresh peripheral blood mononuclear cells of adult T-cell leukemia patients and viral carriers by using the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5620–5624. doi: 10.1073/pnas.86.14.5620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Koralnik I. J., Gessain A., Klotman M. E., Lo Monico A., Berneman Z. N., Franchini G. Protein isoforms encoded by the pX region of human T-cell leukemia/lymphotropic virus type I. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8813–8817. doi: 10.1073/pnas.89.18.8813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kubo R. T., Sette A., Grey H. M., Appella E., Sakaguchi K., Zhu N. Z., Arnott D., Sherman N., Shabanowitz J., Michel H. Definition of specific peptide motifs for four major HLA-A alleles. J Immunol. 1994 Apr 15;152(8):3913–3924. [PubMed] [Google Scholar]
  31. Kuroki M., Nakamura M., Itoyama Y., Tanaka Y., Shiraki H., Baba E., Esaki T., Tatsumoto T., Nagafuchi S., Nakano S. Identification of new epitopes recognized by human monoclonal antibodies with neutralizing and antibody-dependent cellular cytotoxicity activities specific for human T cell leukemia virus type 1. J Immunol. 1992 Aug 1;149(3):940–948. [PubMed] [Google Scholar]
  32. Miller G. J., Pegram S. M., Kirkwood B. R., Beckles G. L., Byam N. T., Clayden S. A., Kinlen L. J., Chan L. C., Carson D. C., Greaves M. F. Ethnic composition, age and sex, together with location and standard of housing as determinants of HLTV-I infection in an urban Trinidadian community. Int J Cancer. 1986 Dec 15;38(6):801–808. doi: 10.1002/ijc.2910380604. [DOI] [PubMed] [Google Scholar]
  33. Murphy E. L., Hanchard B., Figueroa J. P., Gibbs W. N., Lofters W. S., Campbell M., Goedert J. J., Blattner W. A. Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int J Cancer. 1989 Feb 15;43(2):250–253. doi: 10.1002/ijc.2910430214. [DOI] [PubMed] [Google Scholar]
  34. Nam S. H., Kidokoro M., Shida H., Hatanaka M. Processing of gag precursor polyprotein of human T-cell leukemia virus type I by virus-encoded protease. J Virol. 1988 Oct;62(10):3718–3728. doi: 10.1128/jvi.62.10.3718-3728.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nijman H. W., Houbiers J. G., Vierboom M. P., van der Burg S. H., Drijfhout J. W., D'Amaro J., Kenemans P., Melief C. J., Kast W. M. Identification of peptide sequences that potentially trigger HLA-A2.1-restricted cytotoxic T lymphocytes. Eur J Immunol. 1993 Jun;23(6):1215–1219. doi: 10.1002/eji.1830230603. [DOI] [PubMed] [Google Scholar]
  36. Parker C. E., Daenke S., Nightingale S., Bangham C. R. Activated, HTLV-1-specific cytotoxic T-lymphocytes are found in healthy seropositives as well as in patients with tropical spastic paraparesis. Virology. 1992 Jun;188(2):628–636. doi: 10.1016/0042-6822(92)90517-s. [DOI] [PubMed] [Google Scholar]
  37. Parker C. E., Nightingale S., Taylor G. P., Weber J., Bangham C. R. Circulating anti-Tax cytotoxic T lymphocytes from human T-cell leukemia virus type I-infected people, with and without tropical spastic paraparesis, recognize multiple epitopes simultaneously. J Virol. 1994 May;68(5):2860–2868. doi: 10.1128/jvi.68.5.2860-2868.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Parker K. C., Bednarek M. A., Hull L. K., Utz U., Cunningham B., Zweerink H. J., Biddison W. E., Coligan J. E. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol. 1992 Dec 1;149(11):3580–3587. [PubMed] [Google Scholar]
  39. Pique C., Tursz T., Dokhelar M. C. Mutations introduced along the HTLV-I envelope gene result in a non-functional protein: a basis for envelope conservation? EMBO J. 1990 Dec;9(13):4243–4248. doi: 10.1002/j.1460-2075.1990.tb07872.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Poiesz B. J., Ruscetti F. W., Gazdar A. F., Bunn P. A., Minna J. D., Gallo R. C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7415–7419. doi: 10.1073/pnas.77.12.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ruppert J., Sidney J., Celis E., Kubo R. T., Grey H. M., Sette A. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell. 1993 Sep 10;74(5):929–937. doi: 10.1016/0092-8674(93)90472-3. [DOI] [PubMed] [Google Scholar]
  42. Salter R. D., Cresswell P. Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J. 1986 May;5(5):943–949. doi: 10.1002/j.1460-2075.1986.tb04307.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schulz T. F., Calabrò M. L., Hoad J. G., Carrington C. V., Matutes E., Catovsky D., Weiss R. A. HTLV-1 envelope sequences from Brazil, the Caribbean, and Romania: clustering of sequences according to geographic origin and variability in an antibody epitope. Virology. 1991 Oct;184(2):483–491. doi: 10.1016/0042-6822(91)90418-b. [DOI] [PubMed] [Google Scholar]
  44. Seiki M., Hattori S., Hirayama Y., Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3618–3622. doi: 10.1073/pnas.80.12.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sette A., Vitiello A., Reherman B., Fowler P., Nayersina R., Kast W. M., Melief C. J., Oseroff C., Yuan L., Ruppert J. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol. 1994 Dec 15;153(12):5586–5592. [PubMed] [Google Scholar]
  46. Tajima K., Tominaga S. Epidemiology of adult T-cell leukemia/lymphoma in Japan. Curr Top Microbiol Immunol. 1985;115:53–66. doi: 10.1007/978-3-642-70113-9_4. [DOI] [PubMed] [Google Scholar]
  47. Tanaka Y., Tanaka R., Terada E., Koyanagi Y., Miyano-Kurosaki N., Yamamoto N., Baba E., Nakamura M., Shida H. Induction of antibody responses that neutralize human T-cell leukemia virus type I infection in vitro and in vivo by peptide immunization. J Virol. 1994 Oct;68(10):6323–6331. doi: 10.1128/jvi.68.10.6323-6331.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tsomides T. J., Aldovini A., Johnson R. P., Walker B. D., Young R. A., Eisen H. N. Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J Exp Med. 1994 Oct 1;180(4):1283–1293. doi: 10.1084/jem.180.4.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yoshida M., Seiki M., Yamaguchi K., Takatsuki K. Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2534–2537. doi: 10.1073/pnas.81.8.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES