Abstract
Vaccines for lentiviruses would ideally induce in the host complete resistance to infection of host cells. However, such sterilizing immunity may be neither readily achievable nor absolutely necessary to provide protection from exposure to the immunodeficiency viruses. To examine the nature of protective immunity to simian immunodeficiency virus (SIV), we studied three macaques that had been immunized with a recombinant vaccinia virus-based SIV subunit vaccine regimen and exhibited protection from a challenge with cell-free SIV (MNE) as determined by viral cultures, serology, and PCR for viral genomes. Peripheral blood mononuclear cells were obtained from the protected macaques and analyzed for CD8+ cytotoxic T-lymphocyte (CTL) responses to SIV proteins. CTL reactive to SIV proteins not included in the subunit vaccine, and thus to which these animals had not been exposed prior to challenge, were detected postchallenge in the vaccine-protected animals and persisted for up to 1 year. These CTL, as reflected by studies of cytolytic lines and derived T-cell clones, were CD8+, did not recognize allogeneic targets, and recognized the SIV proteins in the context of class I major histocompatibility complex molecules. The frequency of precursor CD8+ CTL reactive to SIV proteins was determined by limiting-dilution analysis and demonstrated that the responses elicited following challenge of protected animals to SIV proteins not present in the vaccine were quantitatively similar to those of animals persistently infected with SIV. The presence of these CD8+ CTL responses to SIV proteins present only in the challenge virus suggests that infection of some host cells occurred postchallenge. These results suggest that the development of a low level of SIV infection following exposure of vaccinated hosts to SIV does not preclude protection from lethal SIV disease by vaccine-induced immunity.
Full Text
The Full Text of this article is available as a PDF (207.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biswas P., Poli G., Orenstein J. M., Fauci A. S. Cytokine-mediated induction of human immunodeficiency virus (HIV) expression and cell death in chronically infected U1 cells: do tumor necrosis factor alpha and gamma interferon selectively kill HIV-infected cells? J Virol. 1994 Apr;68(4):2598–2604. doi: 10.1128/jvi.68.4.2598-2604.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollinger R. C., Quinn T. C., Liu A. Y., Stanhope P. E., Hammond S. A., Viveen R., Clements M. L., Siliciano R. F. Cytokines from vaccine-induced HIV-1 specific cytotoxic T lymphocytes: effects on viral replication. AIDS Res Hum Retroviruses. 1993 Nov;9(11):1067–1077. doi: 10.1089/aid.1993.9.1067. [DOI] [PubMed] [Google Scholar]
- Brochier B., Kieny M. P., Costy F., Coppens P., Bauduin B., Lecocq J. P., Languet B., Chappuis G., Desmettre P., Afiademanyo K. Large-scale eradication of rabies using recombinant vaccinia-rabies vaccine. Nature. 1991 Dec 19;354(6354):520–522. doi: 10.1038/354520a0. [DOI] [PubMed] [Google Scholar]
- Cheynier R., Langlade-Demoyen P., Marescot M. R., Blanche S., Blondin G., Wain-Hobson S., Griscelli C., Vilmer E., Plata F. Cytotoxic T lymphocyte responses in the peripheral blood of children born to human immunodeficiency virus-1-infected mothers. Eur J Immunol. 1992 Sep;22(9):2211–2217. doi: 10.1002/eji.1830220905. [DOI] [PubMed] [Google Scholar]
- Cooney E. L., McElrath M. J., Corey L., Hu S. L., Collier A. C., Arditti D., Hoffman M., Coombs R. W., Smith G. E., Greenberg P. D. Enhanced immunity to human immunodeficiency virus (HIV) envelope elicited by a combined vaccine regimen consisting of priming with a vaccinia recombinant expressing HIV envelope and boosting with gp160 protein. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1882–1886. doi: 10.1073/pnas.90.5.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daar E. S., Moudgil T., Meyer R. D., Ho D. D. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med. 1991 Apr 4;324(14):961–964. doi: 10.1056/NEJM199104043241405. [DOI] [PubMed] [Google Scholar]
- Demkowicz W. E., Jr, Littaua R. A., Wang J., Ennis F. A. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J Virol. 1996 Apr;70(4):2627–2631. doi: 10.1128/jvi.70.4.2627-2631.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edmonson M. B., Addiss D. G., McPherson J. T., Berg J. L., Circo S. R., Davis J. P. Mild measles and secondary vaccine failure during a sustained outbreak in a highly vaccinated population. JAMA. 1990 May 9;263(18):2467–2471. [PubMed] [Google Scholar]
- Fauci A. S. Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science. 1993 Nov 12;262(5136):1011–1018. doi: 10.1126/science.8235617. [DOI] [PubMed] [Google Scholar]
- Gray D., Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med. 1991 Nov 1;174(5):969–974. doi: 10.1084/jem.174.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heeney J. L., van Els C., de Vries P., ten Haaft P., Otting N., Koornstra W., Boes J., Dubbes R., Niphuis H., Dings M. Major histocompatibility complex class I-associated vaccine protection from simian immunodeficiency virus-infected peripheral blood cells. J Exp Med. 1994 Aug 1;180(2):769–774. doi: 10.1084/jem.180.2.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou S., Hyland L., Ryan K. W., Portner A., Doherty P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature. 1994 Jun 23;369(6482):652–654. doi: 10.1038/369652a0. [DOI] [PubMed] [Google Scholar]
- Hu S. L., Abrams K., Barber G. N., Moran P., Zarling J. M., Langlois A. J., Kuller L., Morton W. R., Benveniste R. E. Protection of macaques against SIV infection by subunit vaccines of SIV envelope glycoprotein gp160. Science. 1992 Jan 24;255(5043):456–459. doi: 10.1126/science.1531159. [DOI] [PubMed] [Google Scholar]
- Hu S. L., Abrams K., Misher L., Stallard V., Moran P., Zarling J. M., Langlois A. J., Kuller L., Morton W. R., Benveniste R. E. Evaluation of protective efficacy of recombinant subunit vaccines against simian immunodeficiency virus infection of macaques. J Med Primatol. 1992 Feb-May;21(2-3):119–125. [PubMed] [Google Scholar]
- Hu S. L., Stallard V., Abrams K., Barber G. N., Kuller L., Langlois A. J., Morton W. R., Benveniste R. E. Protection of vaccinia-primed macaques against SIVmne infection by combination immunization with recombinant vaccinia virus and SIVmne gp160. J Med Primatol. 1993 Feb-May;22(2-3):92–99. [PubMed] [Google Scholar]
- Hu S. L., Travis B. M., Stallard V., Abrams K., Misher L., Moran P., Zarling J. M., Langlois A. J., Kuller L., Morton W. R. Immune responses to SIVmne envelope glycoproteins protect macaques from homologous SIV infection. AIDS Res Hum Retroviruses. 1992 Aug;8(8):1489–1494. doi: 10.1089/aid.1992.8.1489. [DOI] [PubMed] [Google Scholar]
- Johnson C., Rome L. P., Stancin T., Kumar M. L. Humoral immunity and clinical reinfections following varicella vaccine in healthy children. Pediatrics. 1989 Sep;84(3):418–421. [PubMed] [Google Scholar]
- Kent S. J., Corey L., Agy M. B., Morton W. R., McElrath M. J., Greenberg P. D. Cytotoxic and proliferative T cell responses in HIV-1-infected Macaca nemestrina. J Clin Invest. 1995 Jan;95(1):248–256. doi: 10.1172/JCI117647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kent S. J., Stallard V., Corey L., Hu S. L., Morton W. R., Gritz L., Panicali D. L., Greenberg P. D. Analysis of cytotoxic T lymphocyte responses to SIV proteins in SIV-infected macaques using antigen-specific stimulation with recombinant vaccinia and fowl poxviruses. AIDS Res Hum Retroviruses. 1994 May;10(5):551–560. doi: 10.1089/aid.1994.10.551. [DOI] [PubMed] [Google Scholar]
- Kuller L., Morton W. R., Benveniste R. E., Tsai C. C., Clark E. A., Gale M. J., Hu S. L., Thouless M. E., Katze M. G. Inoculation of Macaca fascicularis with simian immunodeficiency virus, SIVmne immunologic, serologic, and pathologic changes. J Med Primatol. 1990;19(3-4):367–380. [PubMed] [Google Scholar]
- Langlade-Demoyen P., Ngo-Giang-Huong N., Ferchal F., Oksenhendler E. Human immunodeficiency virus (HIV) nef-specific cytotoxic T lymphocytes in noninfected heterosexual contact of HIV-infected patients. J Clin Invest. 1994 Mar;93(3):1293–1297. doi: 10.1172/JCI117085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau L. L., Jamieson B. D., Somasundaram T., Ahmed R. Cytotoxic T-cell memory without antigen. Nature. 1994 Jun 23;369(6482):648–652. doi: 10.1038/369648a0. [DOI] [PubMed] [Google Scholar]
- Letvin N. L. Vaccines against human immunodeficiency virus--progress and prospects. N Engl J Med. 1993 Nov 4;329(19):1400–1405. doi: 10.1056/NEJM199311043291908. [DOI] [PubMed] [Google Scholar]
- Montefiori D. C., Reimann K. A., Letvin N. L., Zhou J., Hu S. L. Studies of complement-activating antibodies in the SIV/macaque model of acute primary infection and vaccine protection. AIDS Res Hum Retroviruses. 1995 Aug;11(8):963–970. doi: 10.1089/aid.1995.11.963. [DOI] [PubMed] [Google Scholar]
- Müllbacher A. The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J Exp Med. 1994 Jan 1;179(1):317–321. doi: 10.1084/jem.179.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nuchtern J. G., Bonifacino J. S., Biddison W. E., Klausner R. D. Brefeldin A implicates egress from endoplasmic reticulum in class I restricted antigen presentation. Nature. 1989 May 18;339(6221):223–226. doi: 10.1038/339223a0. [DOI] [PubMed] [Google Scholar]
- Oehen S., Waldner H., Kündig T. M., Hengartner H., Zinkernagel R. M. Antivirally protective cytotoxic T cell memory to lymphocytic choriomeningitis virus is governed by persisting antigen. J Exp Med. 1992 Nov 1;176(5):1273–1281. doi: 10.1084/jem.176.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piatak M., Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993 Mar 19;259(5102):1749–1754. doi: 10.1126/science.8096089. [DOI] [PubMed] [Google Scholar]
- Poovorawan Y., Sanpavat S., Pongpunlert W., Chumdermpadetsuk S., Sentrakul P., Safary A. Protective efficacy of a recombinant DNA hepatitis B vaccine in neonates of HBe antigen-positive mothers. JAMA. 1989 Jun 9;261(22):3278–3281. [PubMed] [Google Scholar]
- Renegar K. B., Small P. A., Jr Passive transfer of local immunity to influenza virus infection by IgA antibody. J Immunol. 1991 Mar 15;146(6):1972–1978. [PubMed] [Google Scholar]
- Rowland-Jones S. L., Nixon D. F., Aldhous M. C., Gotch F., Ariyoshi K., Hallam N., Kroll J. S., Froebel K., McMichael A. HIV-specific cytotoxic T-cell activity in an HIV-exposed but uninfected infant. Lancet. 1993 Apr 3;341(8849):860–861. doi: 10.1016/0140-6736(93)93063-7. [DOI] [PubMed] [Google Scholar]
- Rowland-Jones S., Sutton J., Ariyoshi K., Dong T., Gotch F., McAdam S., Whitby D., Sabally S., Gallimore A., Corrah T. HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat Med. 1995 Jan;1(1):59–64. doi: 10.1038/nm0195-59. [DOI] [PubMed] [Google Scholar]
- Sabin A. B. Improbability of effective vaccination against human immunodeficiency virus because of its intracellular transmission and rectal portal of entry. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8852–8855. doi: 10.1073/pnas.89.18.8852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salk J., Bretscher P. A., Salk P. L., Clerici M., Shearer G. M. A strategy for prophylactic vaccination against HIV. Science. 1993 May 28;260(5112):1270–1272. doi: 10.1126/science.8098553. [DOI] [PubMed] [Google Scholar]
- Schultz A. M., Hu S. L. Primate models for HIV vaccines. AIDS. 1993;7 (Suppl 1):S161–S170. [PubMed] [Google Scholar]
- Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
- Yewdell J. W., Bennink J. R. Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes. Science. 1989 Jun 2;244(4908):1072–1075. doi: 10.1126/science.2471266. [DOI] [PubMed] [Google Scholar]