Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5051–5060. doi: 10.1128/jvi.70.8.5051-5060.1996

Mechanisms of herpes simplex virus type 1 reactivation.

W P Halford 1, B M Gebhardt 1, D J Carr 1
PMCID: PMC190459  PMID: 8764012

Abstract

Primary cultures of trigeminal ganglion (TG) cells from herpes simplex virus type 1 (HSV-1) latently infected mice were used to study reactivation. Expression of HSV-1 latency-associated transcripts was noted in TG cell cultures. Infectious virus appeared in 75% of culture supernatants within 120 h after heat stress. Likewise, HSV-1 lytic-phase mRNA and proteins were detectable 24 h after heat stress. HSV-1 antigen first appeared in neurons after heat stress, indicating the neurons were the source of reactivation. The effect of heat stress duration on reactivation was determined. Reactivation occurred in 0, 40, or 67% of cultures after a 1-, 2-, or 3-h heat stress, respectively. However, 72-kDa heat shock protein expression was induced regardless of heat stress duration. Thus, reactivation was not a direct result of inducing the heat shock response. The capacities of several drugs to induce reactivation were also evaluated. While neither epinephrine, forskolin, nor a membrane-permeable cyclic AMP analog induced reactivation, dexamethasone did so in a dose-dependent manner. Furthermore, dexamethasone pretreatment enhanced the kinetics of heat stress-induced reactivation from TG cells. Collectively, the results indicate that TG cell cultures mimic important aspects of in vivo latency and reactivation. Therefore, this model may be useful for studying signalling pathways that lead to HSV-1 reactivation.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batchelor A. H., Wilcox K. W., O'Hare P. Binding and repression of the latency-associated promoter of herpes simplex virus by the immediate early 175K protein. J Gen Virol. 1994 Apr;75(Pt 4):753–767. doi: 10.1099/0022-1317-75-4-753. [DOI] [PubMed] [Google Scholar]
  2. Bloom D. C., Devi-Rao G. B., Hill J. M., Stevens J. G., Wagner E. K. Molecular analysis of herpes simplex virus type 1 during epinephrine-induced reactivation of latently infected rabbits in vivo. J Virol. 1994 Mar;68(3):1283–1292. doi: 10.1128/jvi.68.3.1283-1292.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruning A. H., Samie M. H. Recurrent herpes zoster and high-dose inhaled steroids for asthma. S Afr Med J. 1994 Dec;84(12):873–873. [PubMed] [Google Scholar]
  4. Cantin E. M., Hinton D. R., Chen J., Openshaw H. Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. J Virol. 1995 Aug;69(8):4898–4905. doi: 10.1128/jvi.69.8.4898-4905.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chase R. A., Pottage J. C., Jr, Haber M. H., Kistler G., Jensen D., Levin S. Herpes simplex viral hepatitis in adults: two case reports and review of the literature. Rev Infect Dis. 1987 Mar-Apr;9(2):329–333. doi: 10.1093/clinids/9.2.329. [DOI] [PubMed] [Google Scholar]
  6. Cook M. L., Bastone V. B., Stevens J. G. Evidence that neurons harbor latent herpes simplex virus. Infect Immun. 1974 May;9(5):946–951. doi: 10.1128/iai.9.5.946-951.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook S. D., Paveloff M. J., Doucet J. J., Cottingham A. J., Sedarati F., Hill J. M. Ocular herpes simplex virus reactivation in mice latently infected with latency-associated transcript mutants. Invest Ophthalmol Vis Sci. 1991 Apr;32(5):1558–1561. [PubMed] [Google Scholar]
  8. Davies D. H., Carmichael L. E. Role of cell-mediated immunity in the recovery of cattle from primary and recurrent infections with infectious bovine rhinotracheitis virus. Infect Immun. 1973 Oct;8(4):510–518. doi: 10.1128/iai.8.4.510-518.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Clercq E., Descamps J., De Somer P., Barr P. J., Jones A. S., Walker R. T. (E)-5-(2-Bromovinyl)-2'-deoxyuridine: a potent and selective anti-herpes agent. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2947–2951. doi: 10.1073/pnas.76.6.2947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farrell M. J., Dobson A. T., Feldman L. T. Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):790–794. doi: 10.1073/pnas.88.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gebhardt B. M., Hill J. M. T lymphocytes in the trigeminal ganglia of rabbits during corneal HSV infection. Invest Ophthalmol Vis Sci. 1988 Nov;29(11):1683–1691. [PubMed] [Google Scholar]
  12. Gebhardt B. M., Kaufman H. E. Propranolol suppresses reactivation of herpesvirus. Antiviral Res. 1995 Jun;27(3):255–261. doi: 10.1016/0166-3542(95)00009-b. [DOI] [PubMed] [Google Scholar]
  13. Gronemeyer H. Control of transcription activation by steroid hormone receptors. FASEB J. 1992 May;6(8):2524–2529. doi: 10.1096/fasebj.6.8.1592204. [DOI] [PubMed] [Google Scholar]
  14. Hill J. M., Halford W. P., Wen R., Engel L. S., Green L. C., Gebhardt B. M. Quantitative analysis of polymerase chain reaction products by dot blot. Anal Biochem. 1996 Mar 1;235(1):44–48. doi: 10.1006/abio.1996.0089. [DOI] [PubMed] [Google Scholar]
  15. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., Stevens J. G. Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology. 1990 Jan;174(1):117–125. doi: 10.1016/0042-6822(90)90060-5. [DOI] [PubMed] [Google Scholar]
  16. Inglis A. F., Jr Herpes simplex virus infection. A rare cause of prolonged croup. Arch Otolaryngol Head Neck Surg. 1993 May;119(5):551–552. doi: 10.1001/archotol.1993.01880170075016. [DOI] [PubMed] [Google Scholar]
  17. Iwai Y., Bickel M., Pluznik D. H., Cohen R. B. Identification of sequences within the murine granulocyte-macrophage colony-stimulating factor mRNA 3'-untranslated region that mediate mRNA stabilization induced by mitogen treatment of EL-4 thymoma cells. J Biol Chem. 1991 Sep 25;266(27):17959–17965. [PubMed] [Google Scholar]
  18. Kwon B. S., Gangarosa L. P., Burch K. D., deBack J., Hill J. M. Induction of ocular herpes simplex virus shedding by iontophoresis of epinephrine into rabbit cornea. Invest Ophthalmol Vis Sci. 1981 Sep;21(3):442–449. [PubMed] [Google Scholar]
  19. Laycock K. A., Lee S. F., Brady R. H., Pepose J. S. Characterization of a murine model of recurrent herpes simplex viral keratitis induced by ultraviolet B radiation. Invest Ophthalmol Vis Sci. 1991 Sep;32(10):2741–2746. [PubMed] [Google Scholar]
  20. Leib D. A., Nadeau K. C., Rundle S. A., Schaffer P. A. The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):48–52. doi: 10.1073/pnas.88.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lynas C., Laycock K. A., Cook S. D., Hill T. J., Blyth W. A., Maitland N. J. Detection of herpes simplex virus type 1 gene expression in latently and productively infected mouse ganglia using the polymerase chain reaction. J Gen Virol. 1989 Sep;70(Pt 9):2345–2355. doi: 10.1099/0022-1317-70-9-2345. [DOI] [PubMed] [Google Scholar]
  22. McMinn P. C., Lim I. S., McKenzie P. E., van Deth A. G., Simmons A. Disseminated herpes simplex virus infection in an apparently immunocompetent woman. Med J Aust. 1989 Nov 20;151(10):588-90, 592, 594. doi: 10.5694/j.1326-5377.1989.tb101292.x. [DOI] [PubMed] [Google Scholar]
  23. Mehta A., Maggioncalda J., Bagasra O., Thikkavarapu S., Saikumari P., Valyi-Nagy T., Fraser N. W., Block T. M. In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology. 1995 Jan 10;206(1):633–640. doi: 10.1016/s0042-6822(95)80080-8. [DOI] [PubMed] [Google Scholar]
  24. Mengeling W. L., Lager K. M., Volz D. M., Brockmeier S. L. Effect of various vaccination procedures on shedding, latency, and reactivation of attenuated and virulent pseudorabies virus in swine. Am J Vet Res. 1992 Nov;53(11):2164–2173. [PubMed] [Google Scholar]
  25. Moriya A., Yoshiki A., Kita M., Fushiki S., Imanishi J. Heat shock-induced reactivation of herpes simplex virus type 1 in latently infected mouse trigeminal ganglion cells in dissociated culture. Arch Virol. 1994;135(3-4):419–425. doi: 10.1007/BF01310025. [DOI] [PubMed] [Google Scholar]
  26. Mosimann F., Cuénoud P. F., Steinhäuslin F., Wauters J. P. Herpes simplex esophagitis after renal transplantation. Transpl Int. 1994;7(2):79–82. doi: 10.1007/BF00336466. [DOI] [PubMed] [Google Scholar]
  27. Narita M., Inui S., Nanba K., Shimizu Y. Recrudescence of infectious bovine rhinotracheitis virus and associated neural changes in calves treated with dexamethasone. Am J Vet Res. 1981 Jul;42(7):1192–1197. [PubMed] [Google Scholar]
  28. Rader K. A., Ackland-Berglund C. E., Miller J. K., Pepose J. S., Leib D. A. In vivo characterization of site-directed mutations in the promoter of the herpes simplex virus type 1 latency-associated transcripts. J Gen Virol. 1993 Sep;74(Pt 9):1859–1869. doi: 10.1099/0022-1317-74-9-1859. [DOI] [PubMed] [Google Scholar]
  29. Ramakrishnan R., Levine M., Fink D. J. PCR-based analysis of herpes simplex virus type 1 latency in the rat trigeminal ganglion established with a ribonucleotide reductase-deficient mutant. J Virol. 1994 Nov;68(11):7083–7091. doi: 10.1128/jvi.68.11.7083-7091.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ray A., Prefontaine K. E. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):752–756. doi: 10.1073/pnas.91.2.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rock D., Lokensgard J., Lewis T., Kutish G. Characterization of dexamethasone-induced reactivation of latent bovine herpesvirus 1. J Virol. 1992 Apr;66(4):2484–2490. doi: 10.1128/jvi.66.4.2484-2490.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rootman D. S., Haruta Y., Hill J. M., Kaufman H. E. Corneal nerves are necessary for adrenergic reactivation of ocular herpes. Invest Ophthalmol Vis Sci. 1988 Mar;29(3):351–356. [PubMed] [Google Scholar]
  33. Satoh J., Kim S. U. HSP72 induction by heat stress in human neurons and glial cells in culture. Brain Res. 1994 Aug 8;653(1-2):243–250. doi: 10.1016/0006-8993(94)90396-4. [DOI] [PubMed] [Google Scholar]
  34. Sawtell N. M., Thompson R. L. Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol. 1992 Apr;66(4):2150–2156. doi: 10.1128/jvi.66.4.2150-2156.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scheinman R. I., Cogswell P. C., Lofquist A. K., Baldwin A. S., Jr Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science. 1995 Oct 13;270(5234):283–286. doi: 10.1126/science.270.5234.283. [DOI] [PubMed] [Google Scholar]
  36. Shane S. A., Wollman M., Claassen D. Herpes simplex dissemination following glucocorticoids for upper airway obstruction in an adolescent girl. Pediatr Emerg Care. 1994 Jun;10(3):160–162. doi: 10.1097/00006565-199406000-00010. [DOI] [PubMed] [Google Scholar]
  37. Sheffy B. E., Davies D. H. Reactivation of a bovine herpesvirus after corticosteroid treatment. Proc Soc Exp Biol Med. 1972 Jul;140(3):974–976. doi: 10.3181/00379727-140-36592. [DOI] [PubMed] [Google Scholar]
  38. Shimeld C., Hill T., Blyth B., Easty D. An improved model of recurrent herpetic eye disease in mice. Curr Eye Res. 1989 Nov;8(11):1193–1205. doi: 10.3109/02713688909000044. [DOI] [PubMed] [Google Scholar]
  39. Shimeld C., Whiteland J. L., Nicholls S. M., Grinfeld E., Easty D. L., Gao H., Hill T. J. Immune cell infiltration and persistence in the mouse trigeminal ganglion after infection of the cornea with herpes simplex virus type 1. J Neuroimmunol. 1995 Aug;61(1):7–16. doi: 10.1016/0165-5728(95)00068-d. [DOI] [PubMed] [Google Scholar]
  40. Smith R. L., Pizer L. I., Johnson E. M., Jr, Wilcox C. L. Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Virology. 1992 May;188(1):311–318. doi: 10.1016/0042-6822(92)90760-m. [DOI] [PubMed] [Google Scholar]
  41. Spivack J. G., Fraser N. W. Detection of herpes simplex virus type 1 transcripts during latent infection in mice. J Virol. 1987 Dec;61(12):3841–3847. doi: 10.1128/jvi.61.12.3841-3847.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stevens J. G., Cook M. L. Latent herpes simplex virus in spinal ganglia of mice. Science. 1971 Aug 27;173(3999):843–845. doi: 10.1126/science.173.3999.843. [DOI] [PubMed] [Google Scholar]
  43. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science. 1987 Feb 27;235(4792):1056–1059. doi: 10.1126/science.2434993. [DOI] [PubMed] [Google Scholar]
  44. Stroop W. G., Rock D. L., Fraser N. W. Localization of herpes simplex virus in the trigeminal and olfactory systems of the mouse central nervous system during acute and latent infections by in situ hybridization. Lab Invest. 1984 Jul;51(1):27–38. [PubMed] [Google Scholar]
  45. Underwood G. E., Weed S. D. Recurrent cutaneous herpes simplex in hairless mice. Infect Immun. 1974 Sep;10(3):471–474. doi: 10.1128/iai.10.3.471-474.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Whetstone C. A., Miller J. M., Seal B. S., Bello L. J., Lawrence W. C. Latency and reactivation of a thymidine kinase-negative bovine herpesvirus 1 deletion mutant. Arch Virol. 1992;122(1-2):207–214. doi: 10.1007/BF01321129. [DOI] [PubMed] [Google Scholar]
  47. Wilcox C. L., Johnson E. M., Jr Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. J Virol. 1988 Feb;62(2):393–399. doi: 10.1128/jvi.62.2.393-399.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES