Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5123–5130. doi: 10.1128/jvi.70.8.5123-5130.1996

Species-specific effects of the hcf-1 gene on baculovirus virulence.

A Lu 1, L K Miller 1
PMCID: PMC190467  PMID: 8764020

Abstract

The host cell-specific factor 1 gene (hcf-1) of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) is required for the efficient replication and/or stability of reporter plasmids carrying an AcMNPV-derived origin of DNA replication in a cell-specific manner; hcf-1 is required for reporter plasmid replication or stability in TN-368 cells, a cell line derived from the cabbage looper Trichoplusia ni, but not in IPLB-SF-21 (SF-21) cells, a cell line derived from the fall armyworm Spodoptera frugiperda (A. Lu and L. K. Miller, J. Virol. 69:6265-6272, 1995). To further define the function of hcf-1, recombinant viruses with null mutations in hcf-1 were constructed in SF-21 cells and the phenotype of the mutants was determined in selected cell lines as well as in insect larvae. In S.frugiperda larvae and SF-21 cells, the phenotype of hcf-1 mutants was indistinguishable from that of wild-type AcMNPV. In T. ni larvae as well as T. ni-derived cell lines, hcf-1 mutants exhibited a mutant phenotype. In TN-368 cells, the replication of hcf-1 mutants was extremely impaired; the phenotype included a defect in viral DNA replication, late gene transcription, and virus production as well as a complete cessation of host and viral protein synthesis. In another cell line derived from T. ni, the BTI-TN5B1-4 cell line, the hcf-1 mutants exhibited a less severe phenotype. In T. ni larvae, the infectivity of the budded form of hcf-1 mutants was decreased significantly (50-fold), although no difference in the oral infectivity of the occluded form was observed. T. ni larvae infected with hcf-1 mutants by either oral or hemocoelic routes, however, died 20 to 30% more slowly than those infected with wild-type AcMNPV. These data indicate that there is a host-specific requirement for hcf-1 and that it exerts cell line-specific effects and possibly tissue-specific effects on the rate at which the virus replicates, thereby affecting the virulence of the virus in a species-specific manner.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyce F. M., Bucher N. L. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2348–2352. doi: 10.1073/pnas.93.6.2348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bump N. J., Hackett M., Hugunin M., Seshagiri S., Brady K., Chen P., Ferenz C., Franklin S., Ghayur T., Li P. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science. 1995 Sep 29;269(5232):1885–1888. doi: 10.1126/science.7569933. [DOI] [PubMed] [Google Scholar]
  3. Carbonell L. F., Klowden M. J., Miller L. K. Baculovirus-mediated expression of bacterial genes in dipteran and mammalian cells. J Virol. 1985 Oct;56(1):153–160. doi: 10.1128/jvi.56.1.153-160.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clem R. J., Fechheimer M., Miller L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science. 1991 Nov 29;254(5036):1388–1390. doi: 10.1126/science.1962198. [DOI] [PubMed] [Google Scholar]
  5. Clem R. J., Miller L. K. Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol. 1993 Jul;67(7):3730–3738. doi: 10.1128/jvi.67.7.3730-3738.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clem R. J., Robson M., Miller L. K. Influence of infection route on the infectivity of baculovirus mutants lacking the apoptosis-inhibiting gene p35 and the adjacent gene p94. J Virol. 1994 Oct;68(10):6759–6762. doi: 10.1128/jvi.68.10.6759-6762.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Croizier G., Croizier L., Argaud O., Poudevigne D. Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):48–52. doi: 10.1073/pnas.91.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fraser M. J., Cary L., Boonvisudhi K., Wang H. G. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology. 1995 Aug 20;211(2):397–407. doi: 10.1006/viro.1995.1422. [DOI] [PubMed] [Google Scholar]
  9. Gordon J. D., Carstens E. B. Phenotypic characterization and physical mapping of a temperature-sensitive mutant of Autographa californica nuclear polyhedrosis virus defective in DNA synthesis. Virology. 1984 Oct 15;138(1):69–81. doi: 10.1016/0042-6822(84)90148-x. [DOI] [PubMed] [Google Scholar]
  10. Hammock B. D., McCutchen B. F., Beetham J., Choudary P. V., Fowler E., Ichinose R., Ward V. K., Vickers J. M., Bonning B. C., Harshman L. G. Development of recombinant viral insecticides by expression of an insect-specific toxin and insect-specific enzyme in nuclear polyhedrosis viruses. Arch Insect Biochem Physiol. 1993;22(3-4):315–344. doi: 10.1002/arch.940220303. [DOI] [PubMed] [Google Scholar]
  11. Hershberger P. A., Dickson J. A., Friesen P. D. Site-specific mutagenesis of the 35-kilodalton protein gene encoded by Autographa californica nuclear polyhedrosis virus: cell line-specific effects on virus replication. J Virol. 1992 Sep;66(9):5525–5533. doi: 10.1128/jvi.66.9.5525-5533.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hink W. F. Established insect cell line from the cabbage looper, Trichoplusia ni. Nature. 1970 May 2;226(5244):466–467. doi: 10.1038/226466b0. [DOI] [PubMed] [Google Scholar]
  13. Hofmann C., Sandig V., Jennings G., Rudolph M., Schlag P., Strauss M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10099–10103. doi: 10.1073/pnas.92.22.10099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kool M., Ahrens C. H., Goldbach R. W., Rohrmann G. F., Vlak J. M. Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11212–11216. doi: 10.1073/pnas.91.23.11212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee H. H., Miller L. K. Isolation of genotypic variants of Autographa californica nuclear polyhedrosis virus. J Virol. 1978 Sep;27(3):754–767. doi: 10.1128/jvi.27.3.754-767.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lu A., Carstens E. B. Nucleotide sequence of a gene essential for viral DNA replication in the baculovirus Autographa californica nuclear polyhedrosis virus. Virology. 1991 Mar;181(1):336–347. doi: 10.1016/0042-6822(91)90500-b. [DOI] [PubMed] [Google Scholar]
  17. Lu A., Miller L. K. Differential requirements for baculovirus late expression factor genes in two cell lines. J Virol. 1995 Oct;69(10):6265–6272. doi: 10.1128/jvi.69.10.6265-6272.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lu A., Miller L. K. The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. J Virol. 1995 Feb;69(2):975–982. doi: 10.1128/jvi.69.2.975-982.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maeda S., Kamita S. G., Kondo A. Host range expansion of Autographa californica nuclear polyhedrosis virus (NPV) following recombination of a 0.6-kilobase-pair DNA fragment originating from Bombyx mori NPV. J Virol. 1993 Oct;67(10):6234–6238. doi: 10.1128/jvi.67.10.6234-6238.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morris T. D., Miller L. K. Characterization of productive and non-productive AcMNPV infection in selected insect cell lines. Virology. 1993 Nov;197(1):339–348. doi: 10.1006/viro.1993.1595. [DOI] [PubMed] [Google Scholar]
  21. Morris T. D., Miller L. K. Promoter influence on baculovirus-mediated gene expression in permissive and nonpermissive insect cell lines. J Virol. 1992 Dec;66(12):7397–7405. doi: 10.1128/jvi.66.12.7397-7405.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rice W. C., Miller L. K. Baculovirus transcription in the presence of inhibitors and in nonpermissive Drosophila cells. Virus Res. 1986 Nov;6(2):155–172. doi: 10.1016/0168-1702(86)90047-x. [DOI] [PubMed] [Google Scholar]
  23. Thiem S. M., Miller L. K. Identification, sequence, and transcriptional mapping of the major capsid protein gene of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol. 1989 May;63(5):2008–2018. doi: 10.1128/jvi.63.5.2008-2018.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Todd J. W., Passarelli A. L., Miller L. K. Eighteen baculovirus genes, including lef-11, p35, 39K, and p47, support late gene expression. J Virol. 1995 Feb;69(2):968–974. doi: 10.1128/jvi.69.2.968-974.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro. 1977 Apr;13(4):213–217. doi: 10.1007/BF02615077. [DOI] [PubMed] [Google Scholar]
  26. Wickham T. J., Davis T., Granados R. R., Shuler M. L., Wood H. A. Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog. 1992 Sep-Oct;8(5):391–396. doi: 10.1021/bp00017a003. [DOI] [PubMed] [Google Scholar]
  27. Xue D., Horvitz H. R. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature. 1995 Sep 21;377(6546):248–251. doi: 10.1038/377248a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES