Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5143–5152. doi: 10.1128/jvi.70.8.5143-5152.1996

The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55).

T M Karnauchow 1, D L Tolson 1, B A Harrison 1, E Altman 1, D M Lublin 1, K Dimock 1
PMCID: PMC190469  PMID: 8764022

Abstract

Enterovirus 70 (EV70) is a recently emerged human pathogen belonging to the family Picornaviridae. The ability of EV70 to infect a wide variety of nonprimate cell lines in vitro is unique among human enteroviruses. The importance of virus receptors as determinants of viral host range and tropism led us to study the host cell receptor for this unusual picornavirus. We produced a monoclonal antibody (MAb), EVR1, which bound to the surface of HeLa cells and protected them against infection by EV70 but not by poliovirus or by coxsackievirus B3. This antibody also inhibited the binding of [35S]EV70 to HeLa cells. MAb EVR1 did not bind to monkey kidney (LLC-MK2) cells, nor did it protect these cells against virus infection. In Western immunoassays and in immunoprecipitations, MAb EVR1 identified a HeLa cell glycoprotein of approximately 75 kDa that is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) anchor. Decay-accelerating factor (DAF, CD55) is a 70- to 75-kDa GPI-anchored membrane protein that is involved in the regulation of complement and has also been shown to function as a receptor for several enteroviruses. MAb EVR1 bound to Chinese hamster ovary (CHO) cells constitutively expressing human DAF. Anti-DAF MAbs inhibited EV70 binding to HeLa cells and protected them against EV70 infection. Transient expression of human DAF in murine NIH 3T3 cells resulted in binding of labelled EV70 and stably, transformed NIH 3T3 cells expressing DAF were able to support virus replication. These data indicate that the HeLa cell receptor for EV70 is DAF.

Full Text

The Full Text of this article is available as a PDF (580.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham G., Colonno R. J. Many rhinovirus serotypes share the same cellular receptor. J Virol. 1984 Aug;51(2):340–345. doi: 10.1128/jvi.51.2.340-345.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass D. M., Greenberg H. B. Strategies for the identification of icosahedral virus receptors. J Clin Invest. 1992 Jan;89(1):3–9. doi: 10.1172/JCI115575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergelson J. M., Chan M., Solomon K. R., St John N. F., Lin H., Finberg R. W. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6245–6248. doi: 10.1073/pnas.91.13.6245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergelson J. M., Finberg R. W. Integrins as receptors for virus attachment and cell entry. Trends Microbiol. 1993 Nov;1(8):287–288. doi: 10.1016/0966-842x(93)90003-a. [DOI] [PubMed] [Google Scholar]
  5. Bergelson J. M., Mohanty J. G., Crowell R. L., St John N. F., Lublin D. M., Finberg R. W. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol. 1995 Mar;69(3):1903–1906. doi: 10.1128/jvi.69.3.1903-1906.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bergelson J. M., Shepley M. P., Chan B. M., Hemler M. E., Finberg R. W. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 1992 Mar 27;255(5052):1718–1720. doi: 10.1126/science.1553561. [DOI] [PubMed] [Google Scholar]
  7. Bergelson J. M., St John N., Kawaguchi S., Chan M., Stubdal H., Modlin J., Finberg R. W. Infection by echoviruses 1 and 8 depends on the alpha 2 subunit of human VLA-2. J Virol. 1993 Nov;67(11):6847–6852. doi: 10.1128/jvi.67.11.6847-6852.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol. 1995 Apr;69(4):2664–2666. doi: 10.1128/jvi.69.4.2664-2666.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarkson N. A., Kaufman R., Lublin D. M., Ward T., Pipkin P. A., Minor P. D., Evans D. J., Almond J. W. Characterization of the echovirus 7 receptor: domains of CD55 critical for virus binding. J Virol. 1995 Sep;69(9):5497–5501. doi: 10.1128/jvi.69.9.5497-5501.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coyne K. E., Hall S. E., Thompson S., Arce M. A., Kinoshita T., Fujita T., Anstee D. J., Rosse W., Lublin D. M. Mapping of epitopes, glycosylation sites, and complement regulatory domains in human decay accelerating factor. J Immunol. 1992 Nov 1;149(9):2906–2913. [PubMed] [Google Scholar]
  11. Darougar S., Monnickendam M. A., Woodland R. M. Management and prevention of ocular viral and chlamydial infections. Crit Rev Microbiol. 1989;16(5):369–418. doi: 10.3109/10408418909104473. [DOI] [PubMed] [Google Scholar]
  12. Davitz M. A., Low M. G., Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein. J Exp Med. 1986 May 1;163(5):1150–1161. doi: 10.1084/jem.163.5.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dimock K., Harnish D. G., Sisson G., Leung W. C., Rawls W. E. Synthesis of virus-specific polypeptides and genomic RNA during the replicative cycle of Pichinde virus. J Virol. 1982 Jul;43(1):273–283. doi: 10.1128/jvi.43.1.273-283.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971 Sep;8(9):871–874. doi: 10.1016/0019-2791(71)90454-x. [DOI] [PubMed] [Google Scholar]
  15. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989 Mar 10;56(5):839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  16. Hansen M. B., Nielsen S. E., Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989 May 12;119(2):203–210. doi: 10.1016/0022-1759(89)90397-9. [DOI] [PubMed] [Google Scholar]
  17. Higgins P. G. Enteroviral conjunctivitis and its neurological complications. Arch Virol. 1982;73(2):91–101. doi: 10.1007/BF01314718. [DOI] [PubMed] [Google Scholar]
  18. Hofer F., Gruenberger M., Kowalski H., Machat H., Huettinger M., Kuechler E., Blaas D. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1839–1842. doi: 10.1073/pnas.91.5.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huber S. A. VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J Virol. 1994 Jun;68(6):3453–3458. doi: 10.1128/jvi.68.6.3453-3458.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson R. T. The Soriano Award Lecture. Emerging infections of the nervous system. J Neurol Sci. 1994 Jun;124(1):3–14. doi: 10.1016/0022-510x(94)90003-5. [DOI] [PubMed] [Google Scholar]
  21. King S. L., Cunningham J. A., Finberg R. W., Bergelson J. M. Echovirus 1 interaction with the isolated VLA-2 I domain. J Virol. 1995 May;69(5):3237–3239. doi: 10.1128/jvi.69.5.3237-3239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kono R., Sasagawa A., Ishii K., Sugiura S., Ochi M. Pandemic of new type of conjunctivitis. Lancet. 1972 Jun 3;1(7762):1191–1194. doi: 10.1016/s0140-6736(72)90921-x. [DOI] [PubMed] [Google Scholar]
  23. Kono R., Tajiri E., Miyamura K., Sasagawa A., Tsuruhara T. Hemoagglutination and hemagglutination inhibition tests with enterovirus type 70. J Clin Microbiol. 1978 Jun;7(6):595–598. doi: 10.1128/jcm.7.6.595-598.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lublin D. M., Atkinson J. P. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol. 1989;7:35–58. doi: 10.1146/annurev.iy.07.040189.000343. [DOI] [PubMed] [Google Scholar]
  27. Lublin D. M., Coyne K. E. Phospholipid-anchored and transmembrane versions of either decay-accelerating factor or membrane cofactor protein show equal efficiency in protection from complement-mediated cell damage. J Exp Med. 1991 Jul 1;174(1):35–44. doi: 10.1084/jem.174.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Medof M. E., Lublin D. M., Holers V. M., Ayers D. J., Getty R. R., Leykam J. F., Atkinson J. P., Tykocinski M. L. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2007–2011. doi: 10.1073/pnas.84.7.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Medof M. E., Walter E. I., Roberts W. L., Haas R., Rosenberry T. L. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry. 1986 Nov 4;25(22):6740–6747. doi: 10.1021/bi00370a003. [DOI] [PubMed] [Google Scholar]
  30. Medof M. E., Walter E. I., Rutgers J. L., Knowles D. M., Nussenzweig V. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med. 1987 Mar 1;165(3):848–864. doi: 10.1084/jem.165.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mendelsohn C. L., Wimmer E., Racaniello V. R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989 Mar 10;56(5):855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  32. Mims C. A. Virus receptors and cell tropisms. J Infect. 1986 May;12(3):199–203. doi: 10.1016/s0163-4453(86)94060-0. [DOI] [PubMed] [Google Scholar]
  33. Nicholson-Weller A., Burge J., Austen K. F. Purification from guinea pig erythrocyte stroma of a decay-accelerating factor for the classical c3 convertase, C4b,2a. J Immunol. 1981 Nov;127(5):2035–2039. [PubMed] [Google Scholar]
  34. Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., Austen K. F. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982 Jul;129(1):184–189. [PubMed] [Google Scholar]
  35. Nicholson-Weller A. Decay accelerating factor (CD55). Curr Top Microbiol Immunol. 1992;178:7–30. doi: 10.1007/978-3-642-77014-2_2. [DOI] [PubMed] [Google Scholar]
  36. Nicholson-Weller A., Wang C. E. Structure and function of decay accelerating factor CD55. J Lab Clin Med. 1994 Apr;123(4):485–491. [PubMed] [Google Scholar]
  37. Norkin L. C. Virus receptors: implications for pathogenesis and the design of antiviral agents. Clin Microbiol Rev. 1995 Apr;8(2):293–315. doi: 10.1128/cmr.8.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypiä T. Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology. 1994 Sep;203(2):357–365. doi: 10.1006/viro.1994.1494. [DOI] [PubMed] [Google Scholar]
  39. Shafren D. R., Bates R. C., Agrez M. V., Herd R. L., Burns G. F., Barry R. D. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol. 1995 Jun;69(6):3873–3877. doi: 10.1128/jvi.69.6.3873-3877.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shepley M. P., Racaniello V. R. A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD44. J Virol. 1994 Mar;68(3):1301–1308. doi: 10.1128/jvi.68.3.1301-1308.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shulman M., Wilde C. D., Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature. 1978 Nov 16;276(5685):269–270. doi: 10.1038/276269a0. [DOI] [PubMed] [Google Scholar]
  42. Spicer A. P., Seldin M. F., Gendler S. J. Molecular cloning and chromosomal localization of the mouse decay-accelerating factor genes. Duplicated genes encode glycosylphosphatidylinositol-anchored and transmembrane forms. J Immunol. 1995 Sep 15;155(6):3079–3091. [PubMed] [Google Scholar]
  43. Stanway G. Structure, function and evolution of picornaviruses. J Gen Virol. 1990 Nov;71(Pt 11):2483–2501. doi: 10.1099/0022-1317-71-11-2483. [DOI] [PubMed] [Google Scholar]
  44. Staunton D. E., Merluzzi V. J., Rothlein R., Barton R., Marlin S. D., Springer T. A. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989 Mar 10;56(5):849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  45. Sugita Y., Uzawa M., Tomita M. Isolation of decay-accelerating factor (DAF) from rabbit erythrocyte membranes. J Immunol Methods. 1987 Nov 23;104(1-2):123–130. doi: 10.1016/0022-1759(87)90495-9. [DOI] [PubMed] [Google Scholar]
  46. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Utagawa E. T., Miyamura K., Mukoyama A., Kono R. Neuraminidase-sensitive erythrocyte receptor for enterovirus type 70. J Gen Virol. 1982 Nov;63(Pt 1):141–148. doi: 10.1099/0022-1317-63-1-141. [DOI] [PubMed] [Google Scholar]
  48. Ward T., Pipkin P. A., Clarkson N. A., Stone D. M., Minor P. D., Almond J. W. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 1994 Nov 1;13(21):5070–5074. doi: 10.1002/j.1460-2075.1994.tb06836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. White D. J., Oglesby T., Liszewski M. K., Tedja I., Hourcade D., Wang M. W., Wright L., Wallwork J., Atkinson J. P. Expression of human decay accelerating factor or membrane cofactor protein genes on mouse cells inhibits lysis by human complement. Transplant Proc. 1992 Apr;24(2):474–476. [PubMed] [Google Scholar]
  50. White J. M., Littman D. R. Viral receptors of the immunoglobulin superfamily. Cell. 1989 Mar 10;56(5):725–728. doi: 10.1016/0092-8674(89)90674-0. [DOI] [PubMed] [Google Scholar]
  51. Wright P. W., Strauss G. H., Langford M. P. Acute hemorrhagic conjunctivitis. Am Fam Physician. 1992 Jan;45(1):173–178. [PubMed] [Google Scholar]
  52. Yoshii T., Natori K., Kono R. Replication of enterovirus 70 in non-primate cell cultures. J Gen Virol. 1977 Sep;36(3):377–384. doi: 10.1099/0022-1317-36-3-377. [DOI] [PubMed] [Google Scholar]
  53. de Verdugo U. R., Selinka H. C., Huber M., Kramer B., Kellermann J., Hofschneider P. H., Kandolf R. Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol. 1995 Nov;69(11):6751–6757. doi: 10.1128/jvi.69.11.6751-6757.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES