Abstract
Major histocompatibility [correction of histocampatability] complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) recognizing Epstein-Barr virus (EBV) latent antigens play a pivotal role in restricting the proliferation of EBV-infected normal B cells. However, it is now well established that most of the EBV-associated malignancies escape this potent CTL response in vivo. This resistance to immune surveillance is not due to an obvious CTL dysfunction but has been partly attributed to the down-regulation of the peptide transporters, TAP-1 and TAP-2, thus restricting the endogenous loading of MHC class I molecules with peptides derived from viral nuclear antigens. In the present study we have explored the possibility that EBV latent membrane protein 2A (LMP2A), which is often expressed in many of the EBV-associated malignancies, such as nasopharyngeal carcinoma and Hodgkin's disease tumors, can be endogenously processed through an alternative, TAP-1- and TAP-2-independent pathway. The data presented in this study clearly demonstrate not only that LMP2A can be processed by a TAP-independent mechanism but also that tumor cells with down-regulated TAP expression can be efficiently recognized by LMP2A-specific T cells following infection with recombinant vaccinia virus encoding this protein. We propose that since LMP2A is a membrane protein, it is directly translocated into the secretory pathway and the processing enzymes present in the endoplasmic reticulum are capable of generating the relevant peptide epitopes for MHC binding. The present finding of TAP-1- and TAP-2-independent presentation of LMP2A epitopes suggests a novel mechanism for immune targeting of EBV-positive malignancies, such as nasopharyngeal carcinoma and Hodgkin's disease tumors.
Full Text
The Full Text of this article is available as a PDF (223.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson K., Cresswell P., Gammon M., Hermes J., Williamson A., Zweerink H. Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis. J Exp Med. 1991 Aug 1;174(2):489–492. doi: 10.1084/jem.174.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azuma M., Cayabyab M., Buck D., Phillips J. H., Lanier L. L. CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. J Exp Med. 1992 Feb 1;175(2):353–360. doi: 10.1084/jem.175.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bacik I., Cox J. H., Anderson R., Yewdell J. W., Bennink J. R. TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide. J Immunol. 1994 Jan 15;152(2):381–387. [PubMed] [Google Scholar]
- Baskar S., Ostrand-Rosenberg S., Nabavi N., Nadler L. M., Freeman G. J., Glimcher L. H. Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated major histocompatibility complex class II molecules. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5687–5690. doi: 10.1073/pnas.90.12.5687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braciale T. J., Braciale V. L. Antigen presentation: structural themes and functional variations. Immunol Today. 1991 Apr;12(4):124–129. doi: 10.1016/0167-5699(91)90096-C. [DOI] [PubMed] [Google Scholar]
- Browning M. J., Bodmer W. F. MHC antigens and cancer: implications for T-cell surveillance. Curr Opin Immunol. 1992 Oct;4(5):613–618. doi: 10.1016/0952-7915(92)90036-e. [DOI] [PubMed] [Google Scholar]
- Burrows S. R., Gardner J., Khanna R., Steward T., Moss D. J., Rodda S., Suhrbier A. Five new cytotoxic T cell epitopes identified within Epstein-Barr virus nuclear antigen 3. J Gen Virol. 1994 Sep;75(Pt 9):2489–2493. doi: 10.1099/0022-1317-75-9-2489. [DOI] [PubMed] [Google Scholar]
- Burrows S. R., Rodda S. J., Suhrbier A., Geysen H. M., Moss D. J. The specificity of recognition of a cytotoxic T lymphocyte epitope. Eur J Immunol. 1992 Jan;22(1):191–195. doi: 10.1002/eji.1830220128. [DOI] [PubMed] [Google Scholar]
- Busch R., Vturina I. Y., Drexler J., Momburg F., Hämmerling G. J. Poor loading of major histocompatibility complex class II molecules with endogenously synthesized short peptides in the absence of invariant chain. Eur J Immunol. 1995 Jan;25(1):48–53. doi: 10.1002/eji.1830250110. [DOI] [PubMed] [Google Scholar]
- Busson P., McCoy R., Sadler R., Gilligan K., Tursz T., Raab-Traub N. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol. 1992 May;66(5):3257–3262. doi: 10.1128/jvi.66.5.3257-3262.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cromme F. V., van Bommel P. F., Walboomers J. M., Gallee M. P., Stern P. L., Kenemans P., Helmerhorst T. J., Stukart M. J., Meijer C. J. Differences in MHC and TAP-1 expression in cervical cancer lymph node metastases as compared with the primary tumours. Br J Cancer. 1994 Jun;69(6):1176–1181. doi: 10.1038/bjc.1994.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deacon E. M., Pallesen G., Niedobitek G., Crocker J., Brooks L., Rickinson A. B., Young L. S. Epstein-Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993 Feb 1;177(2):339–349. doi: 10.1084/jem.177.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammond S. A., Johnson R. P., Kalams S. A., Walker B. D., Takiguchi M., Safrit J. T., Koup R. A., Siliciano R. F. An epitope-selective, transporter associated with antigen presentation (TAP)-1/2-independent pathway and a more general TAP-1/2-dependent antigen-processing pathway allow recognition of the HIV-1 envelope glycoprotein by CD8+ CTL. J Immunol. 1995 Jun 1;154(11):6140–6156. [PubMed] [Google Scholar]
- Henderson R. A., Michel H., Sakaguchi K., Shabanowitz J., Appella E., Hunt D. F., Engelhard V. H. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science. 1992 Mar 6;255(5049):1264–1266. doi: 10.1126/science.1546329. [DOI] [PubMed] [Google Scholar]
- Hill A., Worth A., Elliott T., Rowland-Jones S., Brooks J., Rickinson A., McMichael A. Characterization of two Epstein-Barr virus epitopes restricted by HLA-B7. Eur J Immunol. 1995 Jan;25(1):18–24. doi: 10.1002/eji.1830250105. [DOI] [PubMed] [Google Scholar]
- Hu L. F., Minarovits J., Cao S. L., Contreras-Salazar B., Rymo L., Falk K., Klein G., Ernberg I. Variable expression of latent membrane protein in nasopharyngeal carcinoma can be related to methylation status of the Epstein-Barr virus BNLF-1 5'-flanking region. J Virol. 1991 Mar;65(3):1558–1567. doi: 10.1128/jvi.65.3.1558-1567.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kast W. M., Roux L., Curren J., Blom H. J., Voordouw A. C., Meloen R. H., Kolakofsky D., Melief C. J. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2283–2287. doi: 10.1073/pnas.88.6.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khanna R., Burrows S. R., Argaet V., Moss D. J. Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumour cell line. Int Immunol. 1994 Apr;6(4):639–645. doi: 10.1093/intimm/6.4.639. [DOI] [PubMed] [Google Scholar]
- Khanna R., Burrows S. R., Kurilla M. G., Jacob C. A., Misko I. S., Sculley T. B., Kieff E., Moss D. J. Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med. 1992 Jul 1;176(1):169–176. doi: 10.1084/jem.176.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khanna R., Burrows S. R., Suhrbier A., Jacob C. A., Griffin H., Misko I. S., Sculley T. B., Rowe M., Rickinson A. B., Moss D. J. EBV peptide epitope sensitization restores human cytotoxic T cell recognition of Burkitt's lymphoma cells. Evidence for a critical role for ICAM-2. J Immunol. 1993 Jun 1;150(11):5154–5162. [PubMed] [Google Scholar]
- Khanna R., Jacob C. A., Burrows S. R., Kurilla M. G., Kieff E., Misko I. S., Sculley T. B., Moss D. J. Expression of Epstein-Barr virus nuclear antigens in anti-IgM-stimulated B cells following recombinant vaccinia infection and their recognition by human cytotoxic T cells. Immunology. 1991 Nov;74(3):504–510. [PMC free article] [PubMed] [Google Scholar]
- Khanna R., Jacob C. A., Burrows S. R., Moss D. J. Presentation of endogenous viral peptide epitopes by anti-CD40 stimulated human B cells following recombinant vaccinia infection. J Immunol Methods. 1993 Aug 26;164(1):41–49. doi: 10.1016/0022-1759(93)90274-b. [DOI] [PubMed] [Google Scholar]
- Knecht H., Bachmann E., Brousset P., Sandvej K., Nadal D., Bachmann F., Odermatt B. F., Delsol G., Pallesen G. Deletions within the LMP1 oncogene of Epstein-Barr virus are clustered in Hodgkin's disease and identical to those observed in nasopharyngeal carcinoma. Blood. 1993 Nov 15;82(10):2937–2942. [PubMed] [Google Scholar]
- Lee S. P., Thomas W. A., Murray R. J., Khanim F., Kaur S., Young L. S., Rowe M., Kurilla M., Rickinson A. B. HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol. 1993 Dec;67(12):7428–7435. doi: 10.1128/jvi.67.12.7428-7435.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobigs M., Müllbacher A. Recombinant expression of vaccinia virus-encoded TAP1 and TAP2 promotes MHC class I-restricted antigen presentation in a Syrian hamster cell line. Immunol Cell Biol. 1995 Apr;73(2):181–184. doi: 10.1038/icb.1995.29. [DOI] [PubMed] [Google Scholar]
- Longnecker R., Kieff E. A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol. 1990 May;64(5):2319–2326. doi: 10.1128/jvi.64.5.2319-2326.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss D. J., Misko I. S., Burrows S. R., Burman K., McCarthy R., Sculley T. B. Cytotoxic T-cell clones discriminate between A- and B-type Epstein-Barr virus transformants. Nature. 1988 Feb 25;331(6158):719–721. doi: 10.1038/331719a0. [DOI] [PubMed] [Google Scholar]
- PREHN R. T., MAIN J. M. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957 Jun;18(6):769–778. [PubMed] [Google Scholar]
- Pardoll D. Immunotherapy with cytokine gene-transduced tumor cells: the next wave in gene therapy for cancer. Curr Opin Oncol. 1992 Dec;4(6):1124–1129. doi: 10.1097/00001622-199212000-00018. [DOI] [PubMed] [Google Scholar]
- Powis S. J., Townsend A. R., Deverson E. V., Bastin J., Butcher G. W., Howard J. C. Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature. 1991 Dec 19;354(6354):528–531. doi: 10.1038/354528a0. [DOI] [PubMed] [Google Scholar]
- Restifo N. P., Esquivel F., Kawakami Y., Yewdell J. W., Mulé J. J., Rosenberg S. A., Bennink J. R. Identification of human cancers deficient in antigen processing. J Exp Med. 1993 Feb 1;177(2):265–272. doi: 10.1084/jem.177.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rickinson A. B., Murray R. J., Brooks J., Griffin H., Moss D. J., Masucci M. G. T cell recognition of Epstein-Barr virus associated lymphomas. Cancer Surv. 1992;13:53–80. [PubMed] [Google Scholar]
- Rooney C. M., Rickinson A. B., Moss D. J., Lenoir G. M., Epstein M. A. Cell-mediated immunosurveillance mechanisms and the pathogenesis of Burkitt's lymphoma. IARC Sci Publ. 1985;(60):249–264. [PubMed] [Google Scholar]
- Rose J. K., Doms R. W. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Grimm E. A., McGrogan M., Doyle M., Kawasaki E., Koths K., Mark D. F. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science. 1984 Mar 30;223(4643):1412–1414. doi: 10.1126/science.6367046. [DOI] [PubMed] [Google Scholar]
- Rowe M., Khanna R., Jacob C. A., Argaet V., Kelly A., Powis S., Belich M., Croom-Carter D., Lee S., Burrows S. R. Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol. 1995 May;25(5):1374–1384. doi: 10.1002/eji.1830250536. [DOI] [PubMed] [Google Scholar]
- Salter R. D., Cresswell P. Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J. 1986 May;5(5):943–949. doi: 10.1002/j.1460-2075.1986.tb04307.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slingluff C. L., Jr, Hunt D. F., Engelhard V. H. Direct analysis of tumor-associated peptide antigens. Curr Opin Immunol. 1994 Oct;6(5):733–740. doi: 10.1016/0952-7915(94)90077-9. [DOI] [PubMed] [Google Scholar]
- Snyder H. L., Yewdell J. W., Bennink J. R. Trimming of antigenic peptides in an early secretory compartment. J Exp Med. 1994 Dec 1;180(6):2389–2394. doi: 10.1084/jem.180.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spies T., Bresnahan M., Bahram S., Arnold D., Blanck G., Mellins E., Pious D., DeMars R. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature. 1990 Dec 20;348(6303):744–747. doi: 10.1038/348744a0. [DOI] [PubMed] [Google Scholar]
- Spies T., DeMars R. Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature. 1991 May 23;351(6324):323–324. doi: 10.1038/351323a0. [DOI] [PubMed] [Google Scholar]
- Trowsdale J., Hanson I., Mockridge I., Beck S., Townsend A., Kelly A. Sequences encoded in the class II region of the MHC related to the 'ABC' superfamily of transporters. Nature. 1990 Dec 20;348(6303):741–744. doi: 10.1038/348741a0. [DOI] [PubMed] [Google Scholar]
- Wei M. L., Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature. 1992 Apr 2;356(6368):443–446. doi: 10.1038/356443a0. [DOI] [PubMed] [Google Scholar]
- Yewdell J. W., Bennink J. R. Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes. Science. 1989 Jun 2;244(4908):1072–1075. doi: 10.1126/science.2471266. [DOI] [PubMed] [Google Scholar]
- Zweerink H. J., Gammon M. C., Utz U., Sauma S. Y., Harrer T., Hawkins J. C., Johnson R. P., Sirotina A., Hermes J. D., Walker B. D. Presentation of endogenous peptides to MHC class I-restricted cytotoxic T lymphocytes in transport deletion mutant T2 cells. J Immunol. 1993 Mar 1;150(5):1763–1771. [PubMed] [Google Scholar]
- van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]