Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5395–5404. doi: 10.1128/jvi.70.8.5395-5404.1996

Cytomegalovirus assemblin: the amino and carboxyl domains of the proteinase form active enzyme when separately cloned and coexpressed in eukaryotic cells.

M R Hall 1, W Gibson 1
PMCID: PMC190497  PMID: 8764050

Abstract

The cytomegalovirus (CMV) serine proteinase assemblin is synthesized as a precursor that undergoes three principal autoproteolytic cleavages. Two of these are common to the assemblin homologs of all herpes group viruses: one at the maturational site near the carboxyl end of the precursor and another at the release site near the midpoint of the precursor. Release-site cleavage frees the proteolytic amino domain, assemblin, from the nonproteolytic carboxyl domain of the precursor. In CMV, a third autoproteolytic cleavage at an internal site divides assemblin into an amino subunit (An) and a carboxyl subunit (Ac) of approximately the same size that remain associated as an active "two-chain" enzyme. We have cloned the sequences encoding An and Ac as separate genes and expressed them by transfecting human cells with recombinant plasmids and by infecting insect cells with recombinant baculoviruses. When An and Ac from either simian CMV or human CMV were coexpressed in human or insect cells, active two-chain assemblin was formed. This finding demonstrates that An and Ac do not require synthesis as single-chain assemblin to fold and associate correctly in these eukaryotic systems, and it suggests that they may be structurally, if not functionally, distinct domains. An interaction between the independently expressed An and Ac subunits was demonstrated by coimmunoprecipitation experiments, and efforts to disrupt the complex indicate that the subunit interaction is hydrophobic. Cell-based cleavage assays of the two-chain assemblin formed from independently expressed An and Ac also indicate that (i) its specificity for both CMV and herpes simplex virus native substrates is similar to that of single-chain assemblin, (ii) R-site cleavage is not essential for the activity of two-chain recombinant assemblin, and (iii) the human CMV and simian CMV An and Ac recombinant subunits are functionally interchangeable.

Full Text

The Full Text of this article is available as a PDF (614.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babé L. M., Rosé J., Craik C. S. Synthetic "interface" peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Sci. 1992 Oct;1(10):1244–1253. doi: 10.1002/pro.5560011003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baum E. Z., Bebernitz G. A., Hulmes J. D., Muzithras V. P., Jones T. R., Gluzman Y. Expression and analysis of the human cytomegalovirus UL80-encoded protease: identification of autoproteolytic sites. J Virol. 1993 Jan;67(1):497–506. doi: 10.1128/jvi.67.1.497-506.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burck P. J., Berg D. H., Luk T. P., Sassmannshausen L. M., Wakulchik M., Smith D. P., Hsiung H. M., Becker G. W., Gibson W., Villarreal E. C. Human cytomegalovirus maturational proteinase: expression in Escherichia coli, purification, and enzymatic characterization by using peptide substrate mimics of natural cleavage sites. J Virol. 1994 May;68(5):2937–2946. doi: 10.1128/jvi.68.5.2937-2946.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carrascosa A. L. Enhancement of baculovirus plaque assay in insect cell monolayers by DEAE-dextran. Biotechniques. 1994 Jun;16(6):1078-81, 1083-5. [PubMed] [Google Scholar]
  5. Cerretti D. P., Kozlosky C. J., Mosley B., Nelson N., Van Ness K., Greenstreet T. A., March C. J., Kronheim S. R., Druck T., Cannizzaro L. A. Molecular cloning of the interleukin-1 beta converting enzyme. Science. 1992 Apr 3;256(5053):97–100. doi: 10.1126/science.1373520. [DOI] [PubMed] [Google Scholar]
  6. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox G. A., Wakulchik M., Sassmannshausen L. M., Gibson W., Villarreal E. C. Human cytomegalovirus proteinase: candidate glutamic acid identified as third member of putative active-site triad. J Virol. 1995 Jul;69(7):4524–4528. doi: 10.1128/jvi.69.7.4524-4528.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DiIanni C. L., Drier D. A., Deckman I. C., McCann P. J., 3rd, Liu F., Roizman B., Colonno R. J., Cordingley M. G. Identification of the herpes simplex virus-1 protease cleavage sites by direct sequence analysis of autoproteolytic cleavage products. J Biol Chem. 1993 Jan 25;268(3):2048–2051. [PubMed] [Google Scholar]
  9. DiIanni C. L., Stevens J. T., Bolgar M., O'Boyle D. R., 2nd, Weinheimer S. P., Colonno R. J. Identification of the serine residue at the active site of the herpes simplex virus type 1 protease. J Biol Chem. 1994 Apr 29;269(17):12672–12676. [PubMed] [Google Scholar]
  10. Gao M., Matusick-Kumar L., Hurlburt W., DiTusa S. F., Newcomb W. W., Brown J. C., McCann P. J., 3rd, Deckman I., Colonno R. J. The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J Virol. 1994 Jun;68(6):3702–3712. doi: 10.1128/jvi.68.6.3702-3712.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson W. Structural and nonstructural proteins of strain Colburn cytomegalovirus. Virology. 1981 Jun;111(2):516–537. doi: 10.1016/0042-6822(81)90354-8. [DOI] [PubMed] [Google Scholar]
  12. Gibson W., Welch A. R., Ludford J. M. Transient transfection assay of the herpesvirus maturational proteinase, assemblin. Methods Enzymol. 1994;244:399–411. doi: 10.1016/0076-6879(94)44030-1. [DOI] [PubMed] [Google Scholar]
  13. Hall D. L., Darke P. L. Activation of the herpes simplex virus type 1 protease. J Biol Chem. 1995 Sep 29;270(39):22697–22700. doi: 10.1074/jbc.270.39.22697. [DOI] [PubMed] [Google Scholar]
  14. Holwerda B. C., Wittwer A. J., Duffin K. L., Smith C., Toth M. V., Carr L. S., Wiegand R. C., Bryant M. L. Activity of two-chain recombinant human cytomegalovirus protease. J Biol Chem. 1994 Oct 14;269(41):25911–25915. [PubMed] [Google Scholar]
  15. Jones T. R., Sun L., Bebernitz G. A., Muzithras V. P., Kim H. J., Johnston S. H., Baum E. Z. Proteolytic activity of human cytomegalovirus UL80 protease cleavage site mutants. J Virol. 1994 Jun;68(6):3742–3752. doi: 10.1128/jvi.68.6.3742-3752.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Laskey R. A., Mills A. D. Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film. FEBS Lett. 1977 Oct 15;82(2):314–316. doi: 10.1016/0014-5793(77)80609-1. [DOI] [PubMed] [Google Scholar]
  18. Liu F. Y., Roizman B. The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J Virol. 1991 Oct;65(10):5149–5156. doi: 10.1128/jvi.65.10.5149-5156.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu F. Y., Roizman B. The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. J Virol. 1991 Jan;65(1):206–212. doi: 10.1128/jvi.65.1.206-212.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Long E. O., Rosen-Bronson S., Karp D. R., Malnati M., Sekaly R. P., Jaraquemada D. Efficient cDNA expression vectors for stable and transient expression of HLA-DR in transfected fibroblast and lymphoid cells. Hum Immunol. 1991 Aug;31(4):229–235. doi: 10.1016/0198-8859(91)90092-n. [DOI] [PubMed] [Google Scholar]
  21. Loutsch J. M., Galvin N. J., Bryant M. L., Holwerda B. C. Cloning and sequence analysis of murine cytomegalovirus protease and capsid assembly protein genes. Biochem Biophys Res Commun. 1994 Aug 30;203(1):472–478. doi: 10.1006/bbrc.1994.2206. [DOI] [PubMed] [Google Scholar]
  22. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–273. doi: 10.1101/sqb.1986.051.01.032. [DOI] [PubMed] [Google Scholar]
  23. O'Boyle D. R., 2nd, Wager-Smith K., Stevens J. T., 3rd, Weinheimer S. P. The effect of internal autocleavage on kinetic properties of the human cytomegalovirus protease catalytic domain. J Biol Chem. 1995 Mar 3;270(9):4753–4758. doi: 10.1074/jbc.270.9.4753. [DOI] [PubMed] [Google Scholar]
  24. Ponting C. P., Marshall J. M., Cederholm-Williams S. A. Plasminogen: a structural review. Blood Coagul Fibrinolysis. 1992 Oct;3(5):605–614. [PubMed] [Google Scholar]
  25. Preston V. G., Coates J. A., Rixon F. J. Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol. 1983 Mar;45(3):1056–1064. doi: 10.1128/jvi.45.3.1056-1064.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Preston V. G., Rixon F. J., McDougall I. M., McGregor M., al Kobaisi M. F. Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virology. 1992 Jan;186(1):87–98. doi: 10.1016/0042-6822(92)90063-u. [DOI] [PubMed] [Google Scholar]
  27. Ramage P., Cheneval D., Chvei M., Graff P., Hemmig R., Heng R., Kocher H. P., Mackenzie A., Memmert K., Revesz L. Expression, refolding, and autocatalytic proteolytic processing of the interleukin-1 beta-converting enzyme precursor. J Biol Chem. 1995 Apr 21;270(16):9378–9383. doi: 10.1074/jbc.270.16.9378. [DOI] [PubMed] [Google Scholar]
  28. Sardana V. V., Wolfgang J. A., Veloski C. A., Long W. J., LeGrow K., Wolanski B., Emini E. A., LaFemina R. L. Peptide substrate cleavage specificity of the human cytomegalovirus protease. J Biol Chem. 1994 May 20;269(20):14337–14340. [PubMed] [Google Scholar]
  29. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  30. Schenk P., Woods A. S., Gibson W. The 45-kilodalton protein of cytomegalovirus (Colburn) B-capsids is an amino-terminal extension form of the assembly protein. J Virol. 1991 Mar;65(3):1525–1529. doi: 10.1128/jvi.65.3.1525-1529.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith M. C., Furman T. C., Ingolia T. D., Pidgeon C. Chelating peptide-immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins. J Biol Chem. 1988 May 25;263(15):7211–7215. [PubMed] [Google Scholar]
  32. Smith M. C., Giordano J., Cook J. A., Wakulchik M., Villarreal E. C., Becker G. W., Bemis K., Labus J., Manetta J. S. Purification and kinetic characterization of human cytomegalovirus assemblin. Methods Enzymol. 1994;244:412–423. doi: 10.1016/0076-6879(94)44031-x. [DOI] [PubMed] [Google Scholar]
  33. Stubbs M. T., Bode W. Coagulation factors and their inhibitors. Curr Opin Struct Biol. 1994 Dec;4(6):823–832. doi: 10.1016/0959-440x(94)90263-1. [DOI] [PubMed] [Google Scholar]
  34. Tate K. M., Higgins D. L., Holmes W. E., Winkler M. E., Heyneker H. L., Vehar G. A. Functional role of proteolytic cleavage at arginine-275 of human tissue plasminogen activator as assessed by site-directed mutagenesis. Biochemistry. 1987 Jan 27;26(2):338–343. doi: 10.1021/bi00376a002. [DOI] [PubMed] [Google Scholar]
  35. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Taylor J. W., Schmidt W., Cosstick R., Okruszek A., Eckstein F. The use of phosphorothioate-modified DNA in restriction enzyme reactions to prepare nicked DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8749–8764. doi: 10.1093/nar/13.24.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thornberry N. A., Molineaux S. M. Interleukin-1 beta converting enzyme: a novel cysteine protease required for IL-1 beta production and implicated in programmed cell death. Protein Sci. 1995 Jan;4(1):3–12. doi: 10.1002/pro.5560040102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Walker N. P., Talanian R. V., Brady K. D., Dang L. C., Bump N. J., Ferenz C. R., Franklin S., Ghayur T., Hackett M. C., Hammill L. D. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell. 1994 Jul 29;78(2):343–352. doi: 10.1016/0092-8674(94)90303-4. [DOI] [PubMed] [Google Scholar]
  40. Welch A. R., McNally L. M., Gibson W. Cytomegalovirus assembly protein nested gene family: four 3'-coterminal transcripts encode four in-frame, overlapping proteins. J Virol. 1991 Aug;65(8):4091–4100. doi: 10.1128/jvi.65.8.4091-4100.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Welch A. R., McNally L. M., Hall M. R., Gibson W. Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine. J Virol. 1993 Dec;67(12):7360–7372. doi: 10.1128/jvi.67.12.7360-7372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Welch A. R., Villarreal E. C., Gibson W. Cytomegalovirus protein substrates are not cleaved by the herpes simplex virus type 1 proteinase. J Virol. 1995 Jan;69(1):341–347. doi: 10.1128/jvi.69.1.341-347.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Welch A. R., Woods A. S., McNally L. M., Cotter R. J., Gibson W. A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10792–10796. doi: 10.1073/pnas.88.23.10792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wilson K. P., Black J. A., Thomson J. A., Kim E. E., Griffith J. P., Navia M. A., Murcko M. A., Chambers S. P., Aldape R. A., Raybuck S. A. Structure and mechanism of interleukin-1 beta converting enzyme. Nature. 1994 Jul 28;370(6487):270–275. doi: 10.1038/370270a0. [DOI] [PubMed] [Google Scholar]
  45. Yamanaka G., DiIanni C. L., O'Boyle D. R., 2nd, Stevens J., Weinheimer S. P., Deckman I. C., Matusick-Kumar L., Colonno R. J. Stimulation of the herpes simplex virus type I protease by antichaeotrophic salts. J Biol Chem. 1995 Dec 15;270(50):30168–30172. doi: 10.1074/jbc.270.50.30168. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES