Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5422–5429. doi: 10.1128/jvi.70.8.5422-5429.1996

Identification of domains in canine parvovirus VP2 essential for the assembly of virus-like particles.

A Hurtado 1, P Rueda 1, J Nowicky 1, J Sarraseca 1, J I Casal 1
PMCID: PMC190499  PMID: 8764053

Abstract

Canine parvovirus capsids are composed of 60 copies of VP2 and 6 to 10 copies of VPl. To locate essential sites of interaction between VP2 monomers, we have analyzed the effects of a number of VP2 deletion mutants representing the amino terminus and the four major loops of the surface, using as an assay the formation of virus-like particles (VLPs) expressed by recombinant baculoviruses. For the amino terminus we constructed three mutants with progressively larger deletions, i.e., 9, 14, and 24 amino acids. Deletions of 9 and 14 amino acids did not affect the morphology and assembly capabilities of the mutants. However, the mutant with the 24-amino-acid deletion did not show hemagglutination properties or correct VLP morphology, stressing again the relevance of the RNER domain in canine parvovirus functionality. Three of the four mutants with deletions in the loops failed to make correct VLPs, indicating that these regions are essential for correct capsid assembly and morphology. Only the mutant with the deletion in loop 2 was able to assemble in regular VLPs, suggesting that this loop has little or no effect in capsid morphogenesis. Further research has demonstrated that this region can tolerate the insertion of foreign epitopes that are correctly exposed in the surface of the capsid. This result opens the door to the use of these VLPs for antigen delivery.

Full Text

The Full Text of this article is available as a PDF (1,000.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball-Goodrich L. J., Tattersall P. Two amino acid substitutions within the capsid are coordinately required for acquisition of fibrotropism by the lymphotropic strain of minute virus of mice. J Virol. 1992 Jun;66(6):3415–3423. doi: 10.1128/jvi.66.6.3415-3423.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloom M. E., Alexandersen S., Perryman S., Lechner D., Wolfinbarger J. B. Nucleotide sequence and genomic organization of Aleutian mink disease parvovirus (ADV): sequence comparisons between a nonpathogenic and a pathogenic strain of ADV. J Virol. 1988 Aug;62(8):2903–2915. doi: 10.1128/jvi.62.8.2903-2915.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carmichael L. E., Joubert J. C., Pollock R. V. Hemagglutination by canine parvovirus: serologic studies and diagnostic applications. Am J Vet Res. 1980 May;41(5):784–791. [PubMed] [Google Scholar]
  4. Casal J. I., Langeveld J. P., Cortés E., Schaaper W. W., van Dijk E., Vela C., Kamstrup S., Meloen R. H. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence. J Virol. 1995 Nov;69(11):7274–7277. doi: 10.1128/jvi.69.11.7274-7277.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang S. F., Sgro J. Y., Parrish C. R. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties. J Virol. 1992 Dec;66(12):6858–6867. doi: 10.1128/jvi.66.12.6858-6867.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman M. S., Rossmann M. G. Structure, sequence, and function correlations among parvoviruses. Virology. 1993 Jun;194(2):491–508. doi: 10.1006/viro.1993.1288. [DOI] [PubMed] [Google Scholar]
  7. Cortes E., San Martin C., Langeveld J., Meloen R., Dalsgaard K., Vela C., Casal I. Topographical analysis of canine parvovirus virions and recombinant VP2 capsids. J Gen Virol. 1993 Sep;74(Pt 9):2005–2010. doi: 10.1099/0022-1317-74-9-2005. [DOI] [PubMed] [Google Scholar]
  8. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  9. Imai Y., Matsushima Y., Sugimura T., Terada M. A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res. 1991 May 25;19(10):2785–2785. doi: 10.1093/nar/19.10.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawase M., Momoeda M., Young N. S., Kajigaya S. Modest truncation of the major capsid protein abrogates B19 parvovirus capsid formation. J Virol. 1995 Oct;69(10):6567–6571. doi: 10.1128/jvi.69.10.6567-6571.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kitts P. A., Possee R. D. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques. 1993 May;14(5):810–817. [PubMed] [Google Scholar]
  12. Langeveld J. P., Casal J. I., Osterhaus A. D., Cortés E., de Swart R., Vela C., Dalsgaard K., Puijk W. C., Schaaper W. M., Meloen R. H. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J Virol. 1994 Jul;68(7):4506–4513. doi: 10.1128/jvi.68.7.4506-4513.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Langeveld J. P., Casal J. I., Vela C., Dalsgaard K., Smale S. H., Puijk W. C., Meloen R. H. B-cell epitopes of canine parvovirus: distribution on the primary structure and exposure on the viral surface. J Virol. 1993 Feb;67(2):765–772. doi: 10.1128/jvi.67.2.765-772.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. López de Turiso J. A., Cortés E., Martínez C., Ruiz de Ybáez R., Simarro I., Vela C., Casal I. Recombinant vaccine for canine parvovirus in dogs. J Virol. 1992 May;66(5):2748–2753. doi: 10.1128/jvi.66.5.2748-2753.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. López de Turiso J. A., Cortés E., Ranz A., García J., Sanz A., Vela C., Casal J. I. Fine mapping of canine parvovirus B cell epitopes. J Gen Virol. 1991 Oct;72(Pt 10):2445–2456. doi: 10.1099/0022-1317-72-10-2445. [DOI] [PubMed] [Google Scholar]
  16. Matsuura Y., Possee R. D., Overton H. A., Bishop D. H. Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J Gen Virol. 1987 May;68(Pt 5):1233–1250. doi: 10.1099/0022-1317-68-5-1233. [DOI] [PubMed] [Google Scholar]
  17. Rossmann M. G., Johnson J. E. Icosahedral RNA virus structure. Annu Rev Biochem. 1989;58:533–573. doi: 10.1146/annurev.bi.58.070189.002533. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sedlik C., Sarraseca J., Rueda P., Leclerc C., Casal I. Immunogenicity of poliovirus B and T cell epitopes presented by hybrid porcine parvovirus particles. J Gen Virol. 1995 Sep;76(Pt 9):2361–2368. doi: 10.1099/0022-1317-76-9-2361. [DOI] [PubMed] [Google Scholar]
  20. Strassheim M. L., Gruenberg A., Veijalainen P., Sgro J. Y., Parrish C. R. Two dominant neutralizing antigenic determinants of canine parvovirus are found on the threefold spike of the virus capsid. Virology. 1994 Jan;198(1):175–184. doi: 10.1006/viro.1994.1020. [DOI] [PubMed] [Google Scholar]
  21. Tresnan D. B., Southard L., Weichert W., Sgro J. Y., Parrish C. R. Analysis of the cell and erythrocyte binding activities of the dimple and canyon regions of the canine parvovirus capsid. Virology. 1995 Aug 1;211(1):123–132. doi: 10.1006/viro.1995.1385. [DOI] [PubMed] [Google Scholar]
  22. Truyen U., Agbandje M., Parrish C. R. Characterization of the feline host range and a specific epitope of feline panleukopenia virus. Virology. 1994 May 1;200(2):494–503. doi: 10.1006/viro.1994.1212. [DOI] [PubMed] [Google Scholar]
  23. Tsao J., Chapman M. S., Agbandje M., Keller W., Smith K., Wu H., Luo M., Smith T. J., Rossmann M. G., Compans R. W. The three-dimensional structure of canine parvovirus and its functional implications. Science. 1991 Mar 22;251(5000):1456–1464. doi: 10.1126/science.2006420. [DOI] [PubMed] [Google Scholar]
  24. Tullis G. E., Burger L. R., Pintel D. J. The trypsin-sensitive RVER domain in the capsid proteins of minute virus of mice is required for efficient cell binding and viral infection but not for proteolytic processing in vivo. Virology. 1992 Dec;191(2):846–857. doi: 10.1016/0042-6822(92)90260-v. [DOI] [PubMed] [Google Scholar]
  25. Wu H., Rossmann M. G. The canine parvovirus empty capsid structure. J Mol Biol. 1993 Sep 20;233(2):231–244. doi: 10.1006/jmbi.1993.1502. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES