Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5466–5475. doi: 10.1128/jvi.70.8.5466-5475.1996

Biosynthesis of glycoproteins E and I of feline herpesvirus: gE-gI interaction is required for intracellular transport.

J D Mijnes 1, L M van der Horst 1, E van Anken 1, M C Horzinek 1, P J Rottier 1, R J de Groot 1
PMCID: PMC190504  PMID: 8764058

Abstract

The biosynthesis of glycoproteins E and I of feline herpesvirus was studied by using the vaccinia virus vTF7-3 expression system. gE and gI were synthesized as N-glycosylated, endoglycosidase H (EndoH)-sensitive precursors with Mrs of 83,000 and 67,000, respectively. When coexpressed, gE and gI formed sodium dodecyl sulfate-sensitive hetero-oligomeric complexes that were readily transported from the endoplasmic reticulum (ER). Concomitantly, the glycoproteins acquired extensive posttranslational modifications, including O glycosylation, leading to an increase in their apparent molecular weights to 95,000 and 80,000 to 100,000 for gE and gI, respectively. In the absence of gE, most gI remained EndoH sensitive. Only a minor population became EndoH resistant, but these molecules were processed aberrantly as indicated by their Mrs (100,000 to 120,000). By immunofluorescence microscopy, gI was detected primarily in the ER but also at the plasma membrane. gE, when expressed by itself, remained EndoH sensitive and was found only in the ER and the nuclear envelope. These results were corroborated by studying the biosynthesis of gE in feline herpesvirus (FHV)-infected cells. In cells infected with wild-type FHV, gE acquired the same co- and posttranslational modifications as during vTF7-3-driven expression. However, an FHV mutant lacking gI failed to produce mature gE. We conclude that gE is retained in the ER, presumably by associating with molecular chaperones, and becomes transport competent only when in a complex with gI.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arunachalam B., Cresswell P. Molecular requirements for the interaction of class II major histocompatibility complex molecules and invariant chain with calnexin. J Biol Chem. 1995 Feb 10;270(6):2784–2790. doi: 10.1074/jbc.270.6.2784. [DOI] [PubMed] [Google Scholar]
  2. Balan P., Davis-Poynter N., Bell S., Atkinson H., Browne H., Minson T. An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol. 1994 Jun;75(Pt 6):1245–1258. doi: 10.1099/0022-1317-75-6-1245. [DOI] [PubMed] [Google Scholar]
  3. Baucke R. B., Spear P. G. Membrane proteins specified by herpes simplex viruses. V. Identification of an Fc-binding glycoprotein. J Virol. 1979 Dec;32(3):779–789. doi: 10.1128/jvi.32.3.779-789.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell S., Cranage M., Borysiewicz L., Minson T. Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1. J Virol. 1990 May;64(5):2181–2186. doi: 10.1128/jvi.64.5.2181-2186.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burke B., Matlin K., Bause E., Legler G., Peyrieras N., Ploegh H. Inhibition of N-linked oligosaccharide trimming does not interfere with surface expression of certain integral membrane proteins. EMBO J. 1984 Mar;3(3):551–556. doi: 10.1002/j.1460-2075.1984.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Card J. P., Whealy M. E., Robbins A. K., Enquist L. W. Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol. 1992 May;66(5):3032–3041. doi: 10.1128/jvi.66.5.3032-3041.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Card J. P., Whealy M. E., Robbins A. K., Moore R. Y., Enquist L. W. Two alpha-herpesvirus strains are transported differentially in the rodent visual system. Neuron. 1991 Jun;6(6):957–969. doi: 10.1016/0896-6273(91)90236-s. [DOI] [PubMed] [Google Scholar]
  8. Chirnside E. D., de Vries A. A., Mumford J. A., Rottier P. J. Equine arteritis virus-neutralizing antibody in the horse is induced by a determinant on the large envelope glycoprotein GL. J Gen Virol. 1995 Aug;76(Pt 8):1989–1998. doi: 10.1099/0022-1317-76-8-1989. [DOI] [PubMed] [Google Scholar]
  9. Cole G. E., Stacy-Phipps S., Nunberg J. H. Recombinant feline herpesviruses expressing feline leukemia virus envelope and gag proteins. J Virol. 1990 Oct;64(10):4930–4938. doi: 10.1128/jvi.64.10.4930-4938.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crandell R. A., Fabricant C. G., Nelson-Rees W. A. Development, characterization, and viral susceptibility of a feline (Felis catus) renal cell line (CRFK). In Vitro. 1973 Nov-Dec;9(3):176–185. doi: 10.1007/BF02618435. [DOI] [PubMed] [Google Scholar]
  11. Davis-Poynter N., Bell S., Minson T., Browne H. Analysis of the contributions of herpes simplex virus type 1 membrane proteins to the induction of cell-cell fusion. J Virol. 1994 Nov;68(11):7586–7590. doi: 10.1128/jvi.68.11.7586-7590.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Den Boon J. A., Snijder E. J., Locker J. K., Horzinek M. C., Rottier P. J. Another triple-spanning envelope protein among intracellularly budding RNA viruses: the torovirus E protein. Virology. 1991 Jun;182(2):655–663. doi: 10.1016/0042-6822(91)90606-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dingwell K. S., Brunetti C. R., Hendricks R. L., Tang Q., Tang M., Rainbow A. J., Johnson D. C. Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol. 1994 Feb;68(2):834–845. doi: 10.1128/jvi.68.2.834-845.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dingwell K. S., Doering L. C., Johnson D. C. Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus. J Virol. 1995 Nov;69(11):7087–7098. doi: 10.1128/jvi.69.11.7087-7098.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doms R. W., Lamb R. A., Rose J. K., Helenius A. Folding and assembly of viral membrane proteins. Virology. 1993 Apr;193(2):545–562. doi: 10.1006/viro.1993.1164. [DOI] [PubMed] [Google Scholar]
  16. Dubin G., Frank I., Friedman H. M. Herpes simplex virus type 1 encodes two Fc receptors which have different binding characteristics for monomeric immunoglobulin G (IgG) and IgG complexes. J Virol. 1990 Jun;64(6):2725–2731. doi: 10.1128/jvi.64.6.2725-2731.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dubin G., Socolof E., Frank I., Friedman H. M. Herpes simplex virus type 1 Fc receptor protects infected cells from antibody-dependent cellular cytotoxicity. J Virol. 1991 Dec;65(12):7046–7050. doi: 10.1128/jvi.65.12.7046-7050.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Duus K. M., Hatfield C., Grose C. Cell surface expression and fusion by the varicella-zoster virus gH:gL glycoprotein complex: analysis by laser scanning confocal microscopy. Virology. 1995 Jul 10;210(2):429–440. doi: 10.1006/viro.1995.1359. [DOI] [PubMed] [Google Scholar]
  19. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  20. Elroy-Stein O., Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743–6747. doi: 10.1073/pnas.87.17.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Enquist L. W., Dubin J., Whealy M. E., Card J. P. Complementation analysis of pseudorabies virus gE and gI mutants in retinal ganglion cell neurotropism. J Virol. 1994 Aug;68(8):5275–5279. doi: 10.1128/jvi.68.8.5275-5279.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Flowers C. C., O'Callaghan D. J. The equine herpesvirus type 1 (EHV-1) homolog of herpes simplex virus type 1 US9 and the nature of a major deletion within the unique short segment of the EHV-1 KyA strain genome. Virology. 1992 Sep;190(1):307–315. doi: 10.1016/0042-6822(92)91217-i. [DOI] [PubMed] [Google Scholar]
  23. Frank I., Friedman H. M. A novel function of the herpes simplex virus type 1 Fc receptor: participation in bipolar bridging of antiviral immunoglobulin G. J Virol. 1989 Nov;63(11):4479–4488. doi: 10.1128/jvi.63.11.4479-4488.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gaskell R. M., Dennis P. E., Goddard L. E., Cocker F. M., Wills J. M. Isolation of felid herpesvirus I from the trigeminal ganglia of latently infected cats. J Gen Virol. 1985 Feb;66(Pt 2):391–394. doi: 10.1099/0022-1317-66-2-391. [DOI] [PubMed] [Google Scholar]
  26. Gaskell R. M., Povey R. C. The dose response of cats to experimental infection with feline viral rhinotracheitis virus. J Comp Pathol. 1979 Apr;89(2):179–191. doi: 10.1016/0021-9975(79)90057-4. [DOI] [PubMed] [Google Scholar]
  27. Grail A., Harbour D. A., Chia W. Restriction endonuclease mapping of the genome of feline herpesvirus type 1. Arch Virol. 1991;116(1-4):209–220. doi: 10.1007/BF01319243. [DOI] [PubMed] [Google Scholar]
  28. Gullick W. J., Downward J., Waterfield M. D. Antibodies to the autophosphorylation sites of the epidermal growth factor receptor protein-tyrosine kinase as probes of structure and function. EMBO J. 1985 Nov;4(11):2869–2877. doi: 10.1002/j.1460-2075.1985.tb04016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hammond C., Braakman I., Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913–917. doi: 10.1073/pnas.91.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hansen J. E., Lund O., Engelbrecht J., Bohr H., Nielsen J. O., Hansen J. E. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J. 1995 Jun 15;308(Pt 3):801–813. doi: 10.1042/bj3080801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hebert D. N., Foellmer B., Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 1995 May 5;81(3):425–433. doi: 10.1016/0092-8674(95)90395-x. [DOI] [PubMed] [Google Scholar]
  32. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A. C., Johnson D. C. A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol. 1992 Apr;66(4):2240–2250. doi: 10.1128/jvi.66.4.2240-2250.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Johnson D. C., Feenstra V. Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol. 1987 Jul;61(7):2208–2216. doi: 10.1128/jvi.61.7.2208-2216.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol. 1988 Apr;62(4):1347–1354. doi: 10.1128/jvi.62.4.1347-1354.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kritas S. K., Pensaert M. B., Mettenleiter T. C. Invasion and spread of single glycoprotein deleted mutants of Aujeszky's disease virus (ADV) in the trigeminal nervous pathway of pigs after intranasal inoculation. Vet Microbiol. 1994 Jun;40(3-4):323–334. doi: 10.1016/0378-1135(94)90120-1. [DOI] [PubMed] [Google Scholar]
  36. Kritas S. K., Pensaert M. B., Mettenleiter T. C. Role of envelope glycoproteins gI, gp63 and gIII in the invasion and spread of Aujeszky's disease virus in the olfactory nervous pathway of the pig. J Gen Virol. 1994 Sep;75(Pt 9):2319–2327. doi: 10.1099/0022-1317-75-9-2319. [DOI] [PubMed] [Google Scholar]
  37. Krone W. J., Debouck C., Epstein L. G., Heutink P., Meloen R., Goudsmit J. Natural antibodies to HIV-tat epitopes and expression of HIV-1 genes in vivo. J Med Virol. 1988 Nov;26(3):261–270. doi: 10.1002/jmv.1890260306. [DOI] [PubMed] [Google Scholar]
  38. Kuan S. F., Byrd J. C., Basbaum C., Kim Y. S. Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells. J Biol Chem. 1989 Nov 15;264(32):19271–19277. [PubMed] [Google Scholar]
  39. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  40. Litwin V., Jackson W., Grose C. Receptor properties of two varicella-zoster virus glycoproteins, gpI and gpIV, homologous to herpes simplex virus gE and gI. J Virol. 1992 Jun;66(6):3643–3651. doi: 10.1128/jvi.66.6.3643-3651.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Machamer C. E., Mentone S. A., Rose J. K., Farquhar M. G. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6944–6948. doi: 10.1073/pnas.87.18.6944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Maeda K., Horimoto T., Norimine J., Kawaguchi Y., Tomonaga K., Niikura M., Kai C., Takahashi E., Mikami T. Identification and nucleotide sequence of a gene in feline herpesvirus type 1 homologous to the herpes simplex virus gene encoding the glycoprotein B. Arch Virol. 1992;127(1-4):387–397. doi: 10.1007/BF01309602. [DOI] [PubMed] [Google Scholar]
  43. Mettenleiter T. C., Schreurs C., Zuckermann F., Ben-Porat T. Role of pseudorabies virus glycoprotein gI in virus release from infected cells. J Virol. 1987 Sep;61(9):2764–2769. doi: 10.1128/jvi.61.9.2764-2769.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Moremen K. W., Touster O., Robbins P. W. Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem. 1991 Sep 5;266(25):16876–16885. [PubMed] [Google Scholar]
  45. Mulder W. A., Jacobs L., Priem J., Kok G. L., Wagenaar F., Kimman T. G., Pol J. M. Glycoprotein gE-negative pseudorabies virus has a reduced capability to infect second- and third-order neurons of the olfactory and trigeminal routes in the porcine central nervous system. J Gen Virol. 1994 Nov;75(Pt 11):3095–3106. doi: 10.1099/0022-1317-75-11-3095. [DOI] [PubMed] [Google Scholar]
  46. Nasisse M. P., Davis B. J., Guy J. S., Davidson M. G., Sussman W. Isolation of feline herpesvirus 1 from the trigeminal ganglia of acutely and chronically infected cats. J Vet Intern Med. 1992 Mar-Apr;6(2):102–103. doi: 10.1111/j.1939-1676.1992.tb03159.x. [DOI] [PubMed] [Google Scholar]
  47. Nauseef W. M., McCormick S. J., Clark R. A. Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem. 1995 Mar 3;270(9):4741–4747. doi: 10.1074/jbc.270.9.4741. [DOI] [PubMed] [Google Scholar]
  48. Neidhardt H., Schröder C. H., Kaerner H. C. Herpes simplex virus type 1 glycoprotein E is not indispensable for viral infectivity. J Virol. 1987 Feb;61(2):600–603. doi: 10.1128/jvi.61.2.600-603.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nunberg J. H., Wright D. K., Cole G. E., Petrovskis E. A., Post L. E., Compton T., Gilbert J. H. Identification of the thymidine kinase gene of feline herpesvirus: use of degenerate oligonucleotides in the polymerase chain reaction to isolate herpesvirus gene homologs. J Virol. 1989 Aug;63(8):3240–3249. doi: 10.1128/jvi.63.8.3240-3249.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ohmura Y., Ono E., Matsuura T., Kida H., Shimizu Y. Detection of feline herpesvirus 1 transcripts in trigeminal ganglia of latently infected cats. Arch Virol. 1993;129(1-4):341–347. doi: 10.1007/BF01316910. [DOI] [PubMed] [Google Scholar]
  51. Opstelten D. J., de Groote P., Horzinek M. C., Vennema H., Rottier P. J. Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J Virol. 1993 Dec;67(12):7394–7401. doi: 10.1128/jvi.67.12.7394-7401.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Povey R. C. A review of feline viral rhinotracheitis (feline herpesvirus I infection). Comp Immunol Microbiol Infect Dis. 1979;2(2-3):373–387. doi: 10.1016/0147-9571(79)90023-7. [DOI] [PubMed] [Google Scholar]
  53. Rajcáni J., Herget U., Kaerner H. C. Spread of herpes simplex virus (HSV) strains SC16, ANG, ANGpath and its glyC minus and GlyE minus mutants in DBA-2 mice. Acta Virol. 1990 Aug;34(4):305–320. [PubMed] [Google Scholar]
  54. Rottier P., Armstrong J., Meyer D. I. Signal recognition particle-dependent insertion of coronavirus E1, an intracellular membrane glycoprotein. J Biol Chem. 1985 Apr 25;260(8):4648–4652. doi: 10.1016/S0021-9258(18)89119-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  56. Spatz S. J., Maes R. K. Immunological characterization of the feline herpesvirus-1 glycoprotein B and analysis of its deduced amino acid sequence. Virology. 1993 Nov;197(1):125–136. doi: 10.1006/viro.1993.1573. [DOI] [PubMed] [Google Scholar]
  57. Spatz S. J., Rota P. A., Maes R. K. Identification of the feline herpesvirus type 1 (FHV-1) genes encoding glycoproteins G, D, I and E: expression of FHV-1 glycoprotein D in vaccinia and raccoon poxviruses. J Gen Virol. 1994 Jun;75(Pt 6):1235–1244. doi: 10.1099/0022-1317-75-6-1235. [DOI] [PubMed] [Google Scholar]
  58. Su K., Stoller T., Rocco J., Zemsky J., Green R. Pre-Golgi degradation of yeast prepro-alpha-factor expressed in a mammalian cell. Influence of cell type-specific oligosaccharide processing on intracellular fate. J Biol Chem. 1993 Jul 5;268(19):14301–14309. [PubMed] [Google Scholar]
  59. Van Vliet K. E., De Graaf-Miltenburg L. A., Verhoef J., Van Strijp J. A. Direct evidence for antibody bipolar bridging on herpes simplex virus-infected cells. Immunology. 1992 Sep;77(1):109–115. [PMC free article] [PubMed] [Google Scholar]
  60. Vennema H., Rijnbrand R., Heijnen L., Horzinek M. C., Spaan W. J. Enhancement of the vaccinia virus/phage T7 RNA polymerase expression system using encephalomyocarditis virus 5'-untranslated region sequences. Gene. 1991 Dec 15;108(2):201–209. doi: 10.1016/0378-1119(91)90435-E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wardley R. C., Berlinski P. J., Thomsen D. R., Meyer A. L., Post L. E. The use of feline herpesvirus and baculovirus as vaccine vectors for the gag and env genes of feline leukaemia virus. J Gen Virol. 1992 Jul;73(Pt 7):1811–1818. doi: 10.1099/0022-1317-73-7-1811. [DOI] [PubMed] [Google Scholar]
  62. Ware F. E., Vassilakos A., Peterson P. A., Jackson M. R., Lehrman M. A., Williams D. B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem. 1995 Mar 3;270(9):4697–4704. doi: 10.1074/jbc.270.9.4697. [DOI] [PubMed] [Google Scholar]
  63. Whealy M. E., Card J. P., Robbins A. K., Dubin J. R., Rziha H. J., Enquist L. W. Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins. J Virol. 1993 Jul;67(7):3786–3797. doi: 10.1128/jvi.67.7.3786-3797.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Willemse M. J., Chalmers W. S., Cronenberg A. M., Pfundt R., Strijdveen I. G., Sondermeijer P. J. The gene downstream of the gC homologue in feline herpes virus type 1 is involved in the expression of virulence. J Gen Virol. 1994 Nov;75(Pt 11):3107–3116. doi: 10.1099/0022-1317-75-11-3107. [DOI] [PubMed] [Google Scholar]
  65. Willemse M. J., Strijdveen I. G., van Schooneveld S. H., van den Berg M. C., Sondermeijer P. J. Transcriptional analysis of the short segment of the feline herpesvirus type 1 genome and insertional mutagenesis of a unique reading frame. Virology. 1995 Apr 20;208(2):704–711. doi: 10.1006/viro.1995.1202. [DOI] [PubMed] [Google Scholar]
  66. Yao Z., Jackson W., Forghani B., Grose C. Varicella-zoster virus glycoprotein gpI/gpIV receptor: expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system. J Virol. 1993 Jan;67(1):305–314. doi: 10.1128/jvi.67.1.305-314.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zhang Q., Tector M., Salter R. D. Calnexin recognizes carbohydrate and protein determinants of class I major histocompatibility complex molecules. J Biol Chem. 1995 Feb 24;270(8):3944–3948. doi: 10.1074/jbc.270.8.3944. [DOI] [PubMed] [Google Scholar]
  68. Zsak L., Zuckermann F., Sugg N., Ben-Porat T. Glycoprotein gI of pseudorabies virus promotes cell fusion and virus spread via direct cell-to-cell transmission. J Virol. 1992 Apr;66(4):2316–2325. doi: 10.1128/jvi.66.4.2316-2325.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zuckermann F. A., Mettenleiter T. C., Schreurs C., Sugg N., Ben-Porat T. Complex between glycoproteins gI and gp63 of pseudorabies virus: its effect on virus replication. J Virol. 1988 Dec;62(12):4622–4626. doi: 10.1128/jvi.62.12.4622-4626.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. de Vries A. A., Raamsman M. J., van Dijk H. A., Horzinek M. C., Rottier P. J. The small envelope glycoprotein (GS) of equine arteritis virus folds into three distinct monomers and a disulfide-linked dimer. J Virol. 1995 Jun;69(6):3441–3448. doi: 10.1128/jvi.69.6.3441-3448.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. van Engelenburg F. A., Kaashoek M. J., Rijsewijk F. A., van den Burg L., Moerman A., Gielkens A. L., van Oirschot J. T. A glycoprotein E deletion mutant of bovine herpesvirus 1 is avirulent in calves. J Gen Virol. 1994 Sep;75(Pt 9):2311–2318. doi: 10.1099/0022-1317-75-9-2311. [DOI] [PubMed] [Google Scholar]
  72. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES