Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5519–5524. doi: 10.1128/jvi.70.8.5519-5524.1996

African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses.

E A Govorkova 1, G Murti 1, B Meignier 1, C de Taisne 1, R G Webster 1
PMCID: PMC190510  PMID: 8764064

Abstract

The preparation of live, attenuated human influenza virus vaccines and of large quantities of inactivated vaccines after the emergence or reemergence of a pandemic influenza virus will require an alternative host cell system, because embryonated chicken eggs will likely be insufficient and suboptimal. Preliminary studies indicated that an African green monkey kidney cell line (Vero) is a suitable system for the primary isolation and cultivation of influenza A viruses (E. A. Govorkova, N. V. Kaverin, L. V. Gubareva, B. Meignier, and R. G. Webster, J. Infect. Dis. 172:250-253, 1995). We now demonstrate for the first time that Vero cells are suitable for isolation and productive replication of influenza B viruses and determine the biological and genetic properties of both influenza A and B viruses in Vero cells; additionally, we characterize the receptors on Vero cells compared with those on Madin-Darby canine kidney (MDCK) cells. Sequence analysis indicated that the hemagglutinin of Vero cell-derived influenza B viruses was identical to that of MDCK-grown counterparts but differed from that of egg-grown viruses at amino acid positions 196 to 198. Fluorescence-activated cell sorting analysis showed that although Vero cells possess predominantly alpha2,3 galactose-linked sialic acid, they are fully susceptible to infection with either human influenza A or B viruses. Moreover, all virus-specific polypeptides were synthesized in the same proportions in Vero cells as in MDCK cells. Electron microscopic and immunofluorescence studies confirmed that infected Vero cells undergo the same morphological changes as do other polarized epithelia] cells. Taken together, these results indicate that Vero cell lines could serve as an alternative host system for the cultivation of influenza A and B viruses, providing adequate quantities of either virus to meet the vaccine requirements imposed by an emerging pandemic.

Full Text

The Full Text of this article is available as a PDF (562.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carroll S. M., Paulson J. C. Differential infection of receptor-modified host cells by receptor-specific influenza viruses. Virus Res. 1985 Sep;3(2):165–179. doi: 10.1016/0168-1702(85)90006-1. [DOI] [PubMed] [Google Scholar]
  2. Demidova S. A., Gadashevich V. N., Kirillova F. M., El'-Shinnavi I. M., Rovnova Z. I. Vydelenie i izuchenie virusov grippa A na raznykh kletochnykh kul'turakh. Vopr Virusol. 1979 Jul-Aug;(4):346–352. [PubMed] [Google Scholar]
  3. Frank A. L., Couch R. B., Griffis C. A., Baxter B. D. Comparison of different tissue cultures for isolation and quantitation of influenza and parainfluenza viruses. J Clin Microbiol. 1979 Jul;10(1):32–36. doi: 10.1128/jcm.10.1.32-36.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Govorkova E. A., Kaverin N. V., Gubareva L. V., Meignier B., Webster R. G. Replication of influenza A viruses in a green monkey kidney continuous cell line (Vero). J Infect Dis. 1995 Jul;172(1):250–253. doi: 10.1093/infdis/172.1.250. [DOI] [PubMed] [Google Scholar]
  5. Gubareva L. V., Wood J. M., Meyer W. J., Katz J. M., Robertson J. S., Major D., Webster R. G. Codominant mixtures of viruses in reference strains of influenza virus due to host cell variation. Virology. 1994 Feb 15;199(1):89–97. doi: 10.1006/viro.1994.1100. [DOI] [PubMed] [Google Scholar]
  6. Hayden F. G., Cote K. M., Douglas R. G., Jr Plaque inhibition assay for drug susceptibility testing of influenza viruses. Antimicrob Agents Chemother. 1980 May;17(5):865–870. doi: 10.1128/aac.17.5.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hinshaw V. S., Olsen C. W., Dybdahl-Sissoko N., Evans D. Apoptosis: a mechanism of cell killing by influenza A and B viruses. J Virol. 1994 Jun;68(6):3667–3673. doi: 10.1128/jvi.68.6.3667-3673.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Katz J. M., Naeve C. W., Webster R. G. Host cell-mediated variation in H3N2 influenza viruses. Virology. 1987 Feb;156(2):386–395. doi: 10.1016/0042-6822(87)90418-1. [DOI] [PubMed] [Google Scholar]
  9. Katz J. M., Wang M., Webster R. G. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol. 1990 Apr;64(4):1808–1811. doi: 10.1128/jvi.64.4.1808-1811.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katz J. M., Webster R. G. Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J Gen Virol. 1992 May;73(Pt 5):1159–1165. doi: 10.1099/0022-1317-73-5-1159. [DOI] [PubMed] [Google Scholar]
  11. Kaverin N. V., Webster R. G. Impairment of multicycle influenza virus growth in Vero (WHO) cells by loss of trypsin activity. J Virol. 1995 Apr;69(4):2700–2703. doi: 10.1128/jvi.69.4.2700-2703.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lamb R. A., Zebedee S. L., Richardson C. D. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell. 1985 Mar;40(3):627–633. doi: 10.1016/0092-8674(85)90211-9. [DOI] [PubMed] [Google Scholar]
  13. Lau S. C., Scholtissek C. Abortive infection of Vero cells by an influenza A virus (FPV). Virology. 1995 Sep 10;212(1):225–231. doi: 10.1006/viro.1995.1473. [DOI] [PubMed] [Google Scholar]
  14. Monto A. S., Maassab H. F., Bryan E. R. Relative efficacy of embryonated eggs and cell culture for isolation of contemporary influenza viruses. J Clin Microbiol. 1981 Jan;13(1):233–235. doi: 10.1128/jcm.13.1.233-235.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakamura K., Homma M. Protein synthesis in Vero cells abortively infected with influenza B virus. J Gen Virol. 1981 Sep;56(Pt 1):199–202. doi: 10.1099/0022-1317-56-1-199. [DOI] [PubMed] [Google Scholar]
  16. Oxford J. S., Newman R., Corcoran T., Bootman J., Major D., Yates P., Robertson J., Schild G. C. Direct isolation in eggs of influenza A (H1N1) and B viruses with haemagglutinins of different antigenic and amino acid composition. J Gen Virol. 1991 Jan;72(Pt 1):185–189. doi: 10.1099/0022-1317-72-1-185. [DOI] [PubMed] [Google Scholar]
  17. Oxford J. S., Schild G. C., Corcoran T., Newman R., Major D., Robertson J., Bootman J., Higgins P., al-Nakib W., Tyrrell D. A. A host-cell-selected variant of influenza B virus with a single nucleotide substitution in HA affecting a potential glycosylation site was attenuated in virulence for volunteers. Arch Virol. 1990;110(1-2):37–46. doi: 10.1007/BF01310701. [DOI] [PubMed] [Google Scholar]
  18. Rey O., Nayak D. P. Nuclear retention of M1 protein in a temperature-sensitive mutant of influenza (A/WSN/33) virus does not affect nuclear export of viral ribonucleoproteins. J Virol. 1992 Oct;66(10):5815–5824. doi: 10.1128/jvi.66.10.5815-5824.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robertson J. S., Bootman J. S., Nicolson C., Major D., Robertson E. W., Wood J. M. The hemagglutinin of influenza B virus present in clinical material is a single species identical to that of mammalian cell-grown virus. Virology. 1990 Nov;179(1):35–40. doi: 10.1016/0042-6822(90)90270-2. [DOI] [PubMed] [Google Scholar]
  20. Robertson J. S., Naeve C. W., Webster R. G., Bootman J. S., Newman R., Schild G. C. Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology. 1985 May;143(1):166–174. doi: 10.1016/0042-6822(85)90105-9. [DOI] [PubMed] [Google Scholar]
  21. Rogers G. N., Paulson J. C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983 Jun;127(2):361–373. doi: 10.1016/0042-6822(83)90150-2. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schepetiuk S. K., Kok T. The use of MDCK, MEK and LLC-MK2 cell lines with enzyme immunoassay for the isolation of influenza and parainfluenza viruses from clinical specimens. J Virol Methods. 1993 May;42(2-3):241–250. doi: 10.1016/0166-0934(93)90036-q. [DOI] [PubMed] [Google Scholar]
  24. Schild G. C., Oxford J. S., de Jong J. C., Webster R. G. Evidence for host-cell selection of influenza virus antigenic variants. Nature. 1983 Jun 23;303(5919):706–709. doi: 10.1038/303706a0. [DOI] [PubMed] [Google Scholar]
  25. Takizawa T., Matsukawa S., Higuchi Y., Nakamura S., Nakanishi Y., Fukuda R. Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells. J Gen Virol. 1993 Nov;74(Pt 11):2347–2355. doi: 10.1099/0022-1317-74-11-2347. [DOI] [PubMed] [Google Scholar]
  26. Valette M., Allard J. P., Aymard M., Millet V. Susceptibilities to rimantadine of influenza A/H1N1 and A/H3N2 viruses isolated during the epidemics of 1988 to 1989 and 1989 to 1990. Antimicrob Agents Chemother. 1993 Oct;37(10):2239–2240. doi: 10.1128/aac.37.10.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  28. Zuckerman M. A., Cox R. J., Oxford J. S. Attenuation of virulence in influenza B viral infection of volunteers. J Infect. 1994 Jan;28(1):41–48. doi: 10.1016/s0163-4453(94)94099-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES