Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5689–5694. doi: 10.1128/jvi.70.8.5689-5694.1996

Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization.

P Gómez-Puertas 1, F Rodríguez 1, J M Oviedo 1, F Ramiro-Ibáñez 1, F Ruiz-Gonzalvo 1, C Alonso 1, J M Escribano 1
PMCID: PMC190536  PMID: 8764090

Abstract

African swine fever virus induces in convalescent pigs antibodies that neutralized the virus before and after binding to susceptible cells, inhibiting both virus attachment and internalization. A further analysis of the neutralization mechanisms mediated by the different viral proteins showed that antibodies to proteins p72 and p54 are involved in the inhibition of a first step of the replication cycle related to virus attachment, while antibodies to protein p30 are implicated in the inhibition of virus internalization.

Full Text

The Full Text of this article is available as a PDF (434.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afonso C. L., Alcaraz C., Brun A., Sussman M. D., Onisk D. V., Escribano J. M., Rock D. L. Characterization of p30, a highly antigenic membrane and secreted protein of African swine fever virus. Virology. 1992 Jul;189(1):368–373. doi: 10.1016/0042-6822(92)90718-5. [DOI] [PubMed] [Google Scholar]
  2. Alcamí A., Carrascosa A. L., Viñuela E. Interaction of African swine fever virus with macrophages. Virus Res. 1990 Oct;17(2):93–104. doi: 10.1016/0168-1702(90)90071-i. [DOI] [PubMed] [Google Scholar]
  3. Alcamí A., Carrascosa A. L., Viñuela E. The entry of African swine fever virus into Vero cells. Virology. 1989 Jul;171(1):68–75. doi: 10.1016/0042-6822(89)90511-4. [DOI] [PubMed] [Google Scholar]
  4. Alcamí A., Viñuela E. Fc receptors do not mediate African swine fever virus replication in macrophages. Virology. 1991 Apr;181(2):756–759. doi: 10.1016/0042-6822(91)90912-u. [DOI] [PubMed] [Google Scholar]
  5. Alcaraz C., Brun A., Ruiz-Gonzalvo F., Escribano J. M. Cell culture propagation modifies the African swine fever virus replication phenotype in macrophages and generates viral subpopulations differing in protein p54. Virus Res. 1992 Apr;23(1-2):173–182. doi: 10.1016/0168-1702(92)90076-l. [DOI] [PubMed] [Google Scholar]
  6. Alcaraz C., De Diego M., Pastor M. J., Escribano J. M. Comparison of a radioimmunoprecipitation assay to immunoblotting and ELISA for detection of antibody to African swine fever virus. J Vet Diagn Invest. 1990 Jul;2(3):191–196. doi: 10.1177/104063879000200307. [DOI] [PubMed] [Google Scholar]
  7. Alcaraz C., Rodriguez F., Oviedo J. M., Eiras A., De Diego M., Alonso C., Escribano J. M. Highly specific confirmatory western blot test for African swine fever virus antibody detection using the recombinant virus protein p54. J Virol Methods. 1995 Mar;52(1-2):111–119. doi: 10.1016/0166-0934(94)00150-f. [DOI] [PubMed] [Google Scholar]
  8. Carrascosa A. L., Sastre I., Viñuela E. African swine fever virus attachment protein. J Virol. 1991 May;65(5):2283–2289. doi: 10.1128/jvi.65.5.2283-2289.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carrascosa A. L., Sastre I., Viñuela E. Production and purification of recombinant African swine fever virus attachment protein p12. J Biotechnol. 1995 Jun 1;40(2):73–86. doi: 10.1016/0168-1656(95)00035-o. [DOI] [PubMed] [Google Scholar]
  10. Carrascosa A. L., del Val M., Santarén J. F., Viñuela E. Purification and properties of African swine fever virus. J Virol. 1985 May;54(2):337–344. doi: 10.1128/jvi.54.2.337-344.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carrascosa J. L., González P., Carrascosa A. L., Garciá-Barreno B., Enjuanes L., Viñuela E. Localization of structural proteins in African swine fever virus particles by immunoelectron microscopy. J Virol. 1986 May;58(2):377–384. doi: 10.1128/jvi.58.2.377-384.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dimmock N. J. Neutralization of animal viruses. Curr Top Microbiol Immunol. 1993;183:1–149. doi: 10.1007/978-3-642-77849-0. [DOI] [PubMed] [Google Scholar]
  13. Esteves A., Marques M. I., Costa J. V. Two-dimensional analysis of African swine fever virus proteins and proteins induced in infected cells. Virology. 1986 Jul 15;152(1):192–206. doi: 10.1016/0042-6822(86)90384-3. [DOI] [PubMed] [Google Scholar]
  14. Flynn D. C., Meyer W. J., Mackenzie J. M., Jr, Johnston R. E. A conformational change in Sindbis virus glycoproteins E1 and E2 is detected at the plasma membrane as a consequence of early virus-cell interaction. J Virol. 1990 Aug;64(8):3643–3653. doi: 10.1128/jvi.64.8.3643-3653.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gonyea L. M. Purification and iodination of antibody for use in an immunoradiometric assay for serum ferritin. Clin Chem. 1977 Feb;23(2 Pt 1):234–236. [PubMed] [Google Scholar]
  16. Gómez-Puertas P., Rodríguez F., Ortega A., Oviedo J. M., Alonso C., Escribano J. M. Improvement of African swine fever virus neutralization assay using recombinant viruses expressing chromogenic marker genes. J Virol Methods. 1995 Oct;55(2):271–279. doi: 10.1016/0166-0934(95)00055-y. [DOI] [PubMed] [Google Scholar]
  17. Hess W. R. African swine fever: a reassessment. Adv Vet Sci Comp Med. 1981;25:39–69. [PubMed] [Google Scholar]
  18. Jackson D. C., Crabb B. S., Poumbourios P., Tulip W. R., Laver W. G. Three antibody molecules can bind simultaneously to each monomer of the tetramer of influenza virus neuraminidase and the trimer of influenza virus hemagglutinin. Arch Virol. 1991;116(1-4):45–56. doi: 10.1007/BF01319230. [DOI] [PubMed] [Google Scholar]
  19. López-Otín C., Freije J. M., Parra F., Méndez E., Viñuela E. Mapping and sequence of the gene coding for protein p72, the major capsid protein of African swine fever virus. Virology. 1990 Apr;175(2):477–484. doi: 10.1016/0042-6822(90)90432-q. [DOI] [PubMed] [Google Scholar]
  20. Nguyen T. D., Bottreau E., Bernard S., Lantier I., Aynaud J. M. Neutralizing secretory IgA and IgG do not inhibit attachment of transmissible gastroenteritis virus. J Gen Virol. 1986 May;67(Pt 5):939–943. doi: 10.1099/0022-1317-67-5-939. [DOI] [PubMed] [Google Scholar]
  21. Onisk D. V., Borca M. V., Kutish G., Kramer E., Irusta P., Rock D. L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology. 1994 Jan;198(1):350–354. doi: 10.1006/viro.1994.1040. [DOI] [PubMed] [Google Scholar]
  22. Poumbourios P., Brown L. E., White D. O., Jackson D. C. The stoichiometry of binding between monoclonal antibody molecules and the hemagglutinin of influenza virus. Virology. 1990 Dec;179(2):768–776. doi: 10.1016/0042-6822(90)90144-g. [DOI] [PubMed] [Google Scholar]
  23. Rodriguez F., Alcaraz C., Eiras A., Yáez R. J., Rodriguez J. M., Alonso C., Rodriguez J. F., Escribano J. M. Characterization and molecular basis of heterogeneity of the African swine fever virus envelope protein p54. J Virol. 1994 Nov;68(11):7244–7252. doi: 10.1128/jvi.68.11.7244-7252.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rodriguez F., Ley V., Gómez-Puertas P., García R., Rodriguez J. F., Escribano J. M. The structural protein p54 is essential for African swine fever virus viability. Virus Res. 1996 Feb;40(2):161–167. doi: 10.1016/0168-1702(95)01268-0. [DOI] [PubMed] [Google Scholar]
  25. Ruiz Gonzalvo F., Caballero C., Martinez J., Carnero M. E. Neutralization of African swine fever virus by sera from African swine fever-resistant pigs. Am J Vet Res. 1986 Aug;47(8):1858–1862. [PubMed] [Google Scholar]
  26. Ruiz Gonzalvo F., Carnero M. E., Caballero C., Martínez J. Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro. Am J Vet Res. 1986 Jun;47(6):1249–1252. [PubMed] [Google Scholar]
  27. Ruiz-Gonzalvo F., Rodríguez F., Escribano J. M. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology. 1996 Apr 1;218(1):285–289. doi: 10.1006/viro.1996.0193. [DOI] [PubMed] [Google Scholar]
  28. Strebel K., Beck E., Strohmaier K., Schaller H. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins. J Virol. 1986 Mar;57(3):983–991. doi: 10.1128/jvi.57.3.983-991.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Suñ C., Jiménez G., Correa I., Bullido M. J., Gebauer F., Smerdou C., Enjuanes L. Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology. 1990 Aug;177(2):559–569. doi: 10.1016/0042-6822(90)90521-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Viñuela E. African swine fever virus. Curr Top Microbiol Immunol. 1985;116:151–170. doi: 10.1007/978-3-642-70280-8_8. [DOI] [PubMed] [Google Scholar]
  31. Yáez R. J., Rodríguez J. M., Nogal M. L., Yuste L., Enríquez C., Rodriguez J. F., Viñuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995 Apr 1;208(1):249–278. doi: 10.1006/viro.1995.1149. [DOI] [PubMed] [Google Scholar]
  32. Zsak L., Onisk D. V., Afonso C. L., Rock D. L. Virulent African swine fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognizing a 72-kDa viral protein. Virology. 1993 Oct;196(2):596–602. doi: 10.1006/viro.1993.1515. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES