Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Mar;36(3):580–588. doi: 10.1128/aac.36.3.580

Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus.

S Schwarz 1, M Cardoso 1, H C Wegener 1
PMCID: PMC190560  PMID: 1622166

Abstract

The nucleotide sequence of the tetracycline resistance (tet) gene and its regulatory region, encoded by the plasmid pSTE1 from Staphylococcus hyicus, was determined. The tet gene was inducible by tetracycline and encoded a hydrophobic protein of 458 amino acids. Comparisons between the predicted amino acid sequences of the pSTE1-encoded Tet from S. hyicus and the previously sequenced Tet K variants from Staphylococcus aureus, Tet L variants from Bacillus cereus, Bacillus stearothermophilus, and Bacillus subtilis, Tet M variants from Streptococcus faecalis and Staphylococcus aureus as well as Tet O from Streptococcus mutans were performed. An alignment of Tet amino acid sequences revealed the presence of 30 conserved amino acids among these Tet variants. On the basis of the alignment, a phylogenetic tree was constructed. It demonstrated large evolutionary distances between the Tet M and Tet O variants on one hand and the Tet K and Tet L variants on the other hand. The pSTE1-encoded Tet proved to be closely related to the Tet L proteins originally found on small Bacillus plasmids. The observed extensive similarities in the nucleotide sequences of the tet genes and in the deduced Tet amino acid sequences allowed the assignment of the pSTE1-encoded Tet to the Tet proteins of class L.

Full text

PDF
580

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P. The amino acid sequence of Staphylococcus aureus penicillinase. Biochem J. 1975 Nov;151(2):197–218. doi: 10.1042/bj1510197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner D. G., Shaw W. V. The use of synthetic oligonucleotides with universal templates for rapid DNA sequencing: results with staphylococcal replicon pC221. EMBO J. 1985 Feb;4(2):561–568. doi: 10.1002/j.1460-2075.1985.tb03665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brückner R., Matzura H. Regulation of the inducible chloramphenicol acetyltransferase gene of the Staphylococcus aureus plasmid pUB112. EMBO J. 1985 Sep;4(9):2295–2300. doi: 10.1002/j.1460-2075.1985.tb03929.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burdett V., Inamine J., Rajagopalan S. Heterogeneity of tetracycline resistance determinants in Streptococcus. J Bacteriol. 1982 Mar;149(3):995–1004. doi: 10.1128/jb.149.3.995-1004.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burdett V. Nucleotide sequence of the tet(M) gene of Tn916. Nucleic Acids Res. 1990 Oct 25;18(20):6137–6137. doi: 10.1093/nar/18.20.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang S., Cohen S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet. 1979 Jan 5;168(1):111–115. doi: 10.1007/BF00267940. [DOI] [PubMed] [Google Scholar]
  7. Chopra I., Howe T. G. Bacterial resistance to the tetracyclines. Microbiol Rev. 1978 Dec;42(4):707–724. doi: 10.1128/mr.42.4.707-724.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooksey R. C., Baldwin J. N. Relatedness of tetracycline resistance plasmids among species of coagulase-negative staphylococci. Antimicrob Agents Chemother. 1985 Feb;27(2):234–238. doi: 10.1128/aac.27.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  10. Dehottay P., Dusart J., De Meester F., Joris B., Van Beeumen J., Erpicum T., Frère J. M., Ghuysen J. M. Nucleotide sequence of the gene encoding the Streptomyces albus G beta-lactamase precursor. Eur J Biochem. 1987 Jul 15;166(2):345–350. doi: 10.1111/j.1432-1033.1987.tb13521.x. [DOI] [PubMed] [Google Scholar]
  11. Groves D. J. Interspecific relationships of antibiotic resistance in Staphylococcus sp.: isolation and comparison of plasmids determining tetracycline resistance in S. aureus and S. epidermidis. Can J Microbiol. 1979 Dec;25(12):1468–1475. doi: 10.1139/m79-227. [DOI] [PubMed] [Google Scholar]
  12. Gryczan T. J., Contente S., Dubnau D. Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. J Bacteriol. 1978 Apr;134(1):318–329. doi: 10.1128/jb.134.1.318-329.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gryczan T. J., Hahn J., Contente S., Dubnau D. Replication and incompatibility properties of plasmid pE194 in Bacillus subtilis. J Bacteriol. 1982 Nov;152(2):722–735. doi: 10.1128/jb.152.2.722-735.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hein J. Unified approach to alignment and phylogenies. Methods Enzymol. 1990;183:626–645. doi: 10.1016/0076-6879(90)83041-7. [DOI] [PubMed] [Google Scholar]
  15. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol. 1982 May;150(2):804–814. doi: 10.1128/jb.150.2.804-814.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoshino T., Ikeda T., Tomizuka N., Furukawa K. Nucleotide sequence of the tetracycline resistance gene of pTHT15, a thermophilic Bacillus plasmid: comparison with staphylococcal TcR controls. Gene. 1985;37(1-3):131–138. doi: 10.1016/0378-1119(85)90265-3. [DOI] [PubMed] [Google Scholar]
  17. Khan S. A., Novick R. P. Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid. 1983 Nov;10(3):251–259. doi: 10.1016/0147-619x(83)90039-2. [DOI] [PubMed] [Google Scholar]
  18. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  19. Lampson B. C., Parisi J. T. Nucleotide sequence of the constitutive macrolide-lincosamide-streptogramin B resistance plasmid pNE131 from Staphylococcus epidermidis and homologies with Staphylococcus aureus plasmids pE194 and pSN2. J Bacteriol. 1986 Sep;167(3):888–892. doi: 10.1128/jb.167.3.888-892.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LeBlanc D. J., Lee L. N., Titmas B. M., Smith C. J., Tenover F. C. Nucleotide sequence analysis of tetracycline resistance gene tetO from Streptococcus mutans DL5. J Bacteriol. 1988 Aug;170(8):3618–3626. doi: 10.1128/jb.170.8.3618-3626.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levy S. B., McMurry L. M., Burdett V., Courvalin P., Hillen W., Roberts M. C., Taylor D. E. Nomenclature for tetracycline resistance determinants. Antimicrob Agents Chemother. 1989 Aug;33(8):1373–1374. doi: 10.1128/aac.33.8.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lovett P. S. Translational attenuation as the regulator of inducible cat genes. J Bacteriol. 1990 Jan;172(1):1–6. doi: 10.1128/jb.172.1.1-6.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lyon B. R., Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev. 1987 Mar;51(1):88–134. doi: 10.1128/mr.51.1.88-134.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Makaguchi R., Shishido K., Hoshino T., Furukawa K. The nucleotide sequence of the tetracycline resistance gene of plasmid pNS1981 from Bacillus subtilis differs from pTHT15 from a Thermophilic bacillus by two base pairs. Plasmid. 1986 Jul;16(1):72–73. doi: 10.1016/0147-619x(86)90081-8. [DOI] [PubMed] [Google Scholar]
  25. Martin P., Trieu-Cuot P., Courvalin P. Nucleotide sequence of the tetM tetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn1545. Nucleic Acids Res. 1986 Sep 11;14(17):7047–7058. doi: 10.1093/nar/14.17.7047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mojumdar M., Khan S. A. Characterization of the tetracycline resistance gene of plasmid pT181 of Staphylococcus aureus. J Bacteriol. 1988 Dec;170(12):5522–5528. doi: 10.1128/jb.170.12.5522-5528.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Monod M., Denoya C., Dubnau D. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol. 1986 Jul;167(1):138–147. doi: 10.1128/jb.167.1.138-147.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nesin M., Svec P., Lupski J. R., Godson G. N., Kreiswirth B., Kornblum J., Projan S. J. Cloning and nucleotide sequence of a chromosomally encoded tetracycline resistance determinant, tetA(M), from a pathogenic, methicillin-resistant strain of Staphylococcus aureus. Antimicrob Agents Chemother. 1990 Nov;34(11):2273–2276. doi: 10.1128/aac.34.11.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Novick R. Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology. 1967 Sep;33(1):155–166. doi: 10.1016/0042-6822(67)90105-5. [DOI] [PubMed] [Google Scholar]
  30. Palva A., Vigren G., Simonen M., Rintala H., Laamanen P. Nucleotide sequence of the tetracycline resistance gene of pBC16 from Bacillus cereus. Nucleic Acids Res. 1990 Mar 25;18(6):1635–1635. doi: 10.1093/nar/18.6.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Perkins J. B., Youngman P. Streptococcus plasmid pAM alpha 1 is a composite of two separable replicons, one of which is closely related to Bacillus plasmid pBC16. J Bacteriol. 1983 Aug;155(2):607–615. doi: 10.1128/jb.155.2.607-615.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Polak J., Novick R. P. Closely related plasmids from Staphylococcus aureus and soil bacilli. Plasmid. 1982 Mar;7(2):152–162. doi: 10.1016/0147-619x(82)90074-9. [DOI] [PubMed] [Google Scholar]
  33. Rahman M., Kent L., Noble W. C. Streptomycin and tetracycline resistance plasmids in Staphylococcus hyicus and other staphylococci. J Appl Bacteriol. 1991 Mar;70(3):211–215. doi: 10.1111/j.1365-2672.1991.tb02926.x. [DOI] [PubMed] [Google Scholar]
  34. Sakaguchi R., Amano H., Shishido K. Nucleotide sequence homology of the tetracycline-resistance determinant naturally maintained in Bacillus subtilis Marburg 168 chromosome and the tetracycline-resistance gene of B. subtilis plasmid pNS1981. Biochim Biophys Acta. 1988 Sep 7;950(3):441–444. doi: 10.1016/0167-4781(88)90142-x. [DOI] [PubMed] [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schwarz S., Blobel H. A new streptomycin-resistance plasmid from Staphylococcus hyicus and its structural relationship to other staphylococcal resistance plasmids. J Med Microbiol. 1990 Jul;32(3):201–205. doi: 10.1099/00222615-32-3-201. [DOI] [PubMed] [Google Scholar]
  37. Schwarz S., Blobel H. Isolation and restriction endonuclease analysis of a tetracycline resistance plasmid from Staphylococcus hyicus. Vet Microbiol. 1990 Aug;24(2):113–122. doi: 10.1016/0378-1135(90)90058-4. [DOI] [PubMed] [Google Scholar]
  38. Schwarz S., Cardoso M., Grölz-Krug S., Blobel H. Common antibiotic resistance plasmids in Staphylococcus aureus and Staphylococcus epidermidis from human and canine infections. Zentralbl Bakteriol. 1990 Aug;273(3):369–377. doi: 10.1016/s0934-8840(11)80440-8. [DOI] [PubMed] [Google Scholar]
  39. Schwarz S., Cardoso M. Molecular cloning, purification, and properties of a plasmid-encoded chloramphenicol acetyltransferase from Staphylococcus haemolyticus. Antimicrob Agents Chemother. 1991 Jul;35(7):1277–1283. doi: 10.1128/aac.35.7.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schwarz S., Spies U., Reitz B., Seyfert H. M., Lämmler C., Blobel H. Detection and interspecies-transformation of a beta-lactamase-encoding plasmid from Pasteurella haemolytica. Zentralbl Bakteriol Mikrobiol Hyg A. 1989 Mar;270(4):462–469. doi: 10.1016/s0176-6724(89)80017-3. [DOI] [PubMed] [Google Scholar]
  41. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  43. Totten P. A., Vidal L., Baldwin J. N. Penicillin and tetracycline resistance plasmids in Staphylococcus epidermidis. Antimicrob Agents Chemother. 1981 Sep;20(3):359–365. doi: 10.1128/aac.20.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES