Abstract
Early region 3 (E3) of mouse adenovirus type 1 has the potential to produce three proteins which have identical amino termini but unique carboxy-terminal sequences. Three recombinant deletion viruses were constructed so that each could produce only one of the three E3 proteins. A fourth mutant that should produce no E3 proteins was also constructed. These recombinants were able to grow in mouse 3T6 cells and produced wild-type levels of viral mRNAs and proteins except for those specifically deleted by the mutations. Early mRNA production from the mutant viruses was analyzed by reverse transcriptase PCR and confirmed that each deletion mutant would be able to produce only one of the three E3 proteins. Late mRNA production was analyzed by Northern (RNA) blotting and found to be similar in wild-type and mutant viruses. Capsid morphology was unaltered in the mutant viruses as seen by electron microscopy. Immunoprecipitation of E3 proteins from infections of mouse 3T6 cells using an antiserum specific for all three E3 proteins was used to examine the effect of the introduced mutations on protein expression. Two mutants produced only one class of E3 protein as predicted from their specific mutations and mRNA expression profiles. One mutant virus failed to produce any detectable E3 proteins. The predicted E3-null mutant was found to be leaky and could produce low levels of E3 proteins. Outbred Swiss mice were infected with the E3 mutant viruses to determine if the E3 proteins have an effect on the pathogenicity of the virus in mice. All of the mutants showed decreased pathogenicity as determined by increased 50% lethal doses, indicating that the proteins of the E3 region are important determinants of the pathogenesis of mouse adenovirus in its natural host.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson M., Päbo S., Nilsson T., Peterson P. A. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell. 1985 Nov;43(1):215–222. doi: 10.1016/0092-8674(85)90026-1. [DOI] [PubMed] [Google Scholar]
- Bailey A., Mautner V. Phylogenetic relationships among adenovirus serotypes. Virology. 1994 Dec;205(2):438–452. doi: 10.1006/viro.1994.1664. [DOI] [PubMed] [Google Scholar]
- Ball A. O., Beard C. W., Redick S. D., Spindler K. R. Genome organization of mouse adenovirus type 1 early region 1: a novel transcription map. Virology. 1989 Jun;170(2):523–536. doi: 10.1016/0042-6822(89)90444-3. [DOI] [PubMed] [Google Scholar]
- Ball A. O., Williams M. E., Spindler K. R. Identification of mouse adenovirus type 1 early region 1: DNA sequence and a conserved transactivating function. J Virol. 1988 Nov;62(11):3947–3957. doi: 10.1128/jvi.62.11.3947-3957.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbu V., Dautry F. Northern blot normalization with a 28S rRNA oligonucleotide probe. Nucleic Acids Res. 1989 Sep 12;17(17):7115–7115. doi: 10.1093/nar/17.17.7115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beard C. W., Ball A. O., Wooley E. H., Spindler K. R. Transcription mapping of mouse adenovirus type 1 early region 3. Virology. 1990 Mar;175(1):81–90. doi: 10.1016/0042-6822(90)90188-w. [DOI] [PubMed] [Google Scholar]
- Beard C. W., Spindler K. R. Characterization of an 11K protein produced by early region 3 of mouse adenovirus type 1. Virology. 1995 Apr 20;208(2):457–466. doi: 10.1006/viro.1995.1176. [DOI] [PubMed] [Google Scholar]
- Blailock Z. R., Rabin E. R., Melnick J. L. Adenovirus endocarditis in mice. Science. 1967 Jul 7;157(3784):69–70. doi: 10.1126/science.157.3784.69. [DOI] [PubMed] [Google Scholar]
- Bordo D., Argos P. Suggestions for "safe" residue substitutions in site-directed mutagenesis. J Mol Biol. 1991 Feb 20;217(4):721–729. doi: 10.1016/0022-2836(91)90528-e. [DOI] [PubMed] [Google Scholar]
- Burgert H. G., Kvist S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell. 1985 Jul;41(3):987–997. doi: 10.1016/s0092-8674(85)80079-9. [DOI] [PubMed] [Google Scholar]
- Burgert H. G., Kvist S. The E3/19K protein of adenovirus type 2 binds to the domains of histocompatibility antigens required for CTL recognition. EMBO J. 1987 Jul;6(7):2019–2026. doi: 10.1002/j.1460-2075.1987.tb02466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgert H. G., Maryanski J. L., Kvist S. "E3/19K" protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1356–1360. doi: 10.1073/pnas.84.5.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai F., Tang D., Weber J. M. Primary structure of the murine adenovirus type 1 proteinase. Biochim Biophys Acta. 1992 Feb 11;1129(3):339–341. doi: 10.1016/0167-4781(92)90514-z. [DOI] [PubMed] [Google Scholar]
- Carlin C. R., Tollefson A. E., Brady H. A., Hoffman B. L., Wold W. S. Epidermal growth factor receptor is down-regulated by a 10,400 MW protein encoded by the E3 region of adenovirus. Cell. 1989 Apr 7;57(1):135–144. doi: 10.1016/0092-8674(89)90179-7. [DOI] [PubMed] [Google Scholar]
- Cauthen A. N., Spindler K. R. Sequence of the mouse adenovirus type-1 DNA encoding the 100-kDa, 33-kDa and DNA-binding proteins. Gene. 1996 Feb 12;168(2):183–187. doi: 10.1016/0378-1119(95)00715-6. [DOI] [PubMed] [Google Scholar]
- Cox J. H., Buller R. M., Bennink J. R., Yewdell J. W., Karupiah G. Expression of adenovirus E3/19K protein does not alter mouse MHC class I-restricted responses to vaccinia virus. Virology. 1994 Nov 1;204(2):558–562. doi: 10.1006/viro.1994.1569. [DOI] [PubMed] [Google Scholar]
- Dragulev B. P., Sira S., Abouhaidar M. G., Campbell J. B. Sequence analysis of putative E3 and fiber genomic regions of two strains of canine adenovirus type 1. Virology. 1991 Jul;183(1):298–305. doi: 10.1016/0042-6822(91)90142-x. [DOI] [PubMed] [Google Scholar]
- Dunsworth-Browne M., Schell R. E., Berk A. J. Adenovirus terminal protein protects single stranded DNA from digestion by a cellular exonuclease. Nucleic Acids Res. 1980 Feb 11;8(3):543–554. doi: 10.1093/nar/8.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fejer G., Gyory I., Tufariello J., Horwitz M. S. Characterization of transgenic mice containing adenovirus early region 3 genomic DNA. J Virol. 1994 Sep;68(9):5871–5881. doi: 10.1128/jvi.68.9.5871-5881.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flomenberg P., Szmulewicz J., Gutierrez E., Lupatkin H. Role of the adenovirus E3-19k conserved region in binding major histocompatibility complex class I molecules. J Virol. 1992 Aug;66(8):4778–4783. doi: 10.1128/jvi.66.8.4778-4783.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ginsberg H. S., Lundholm-Beauchamp U., Horswood R. L., Pernis B., Wold W. S., Chanock R. M., Prince G. A. Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci U S A. 1989 May;86(10):3823–3827. doi: 10.1073/pnas.86.10.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ginsberg H. S., Moldawer L. L., Sehgal P. B., Redington M., Kilian P. L., Chanock R. M., Prince G. A. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1651–1655. doi: 10.1073/pnas.88.5.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gooding L. R., Elmore L. W., Tollefson A. E., Brady H. A., Wold W. S. A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell. 1988 May 6;53(3):341–346. doi: 10.1016/0092-8674(88)90154-7. [DOI] [PubMed] [Google Scholar]
- Gooding L. R., Ranheim T. S., Tollefson A. E., Aquino L., Duerksen-Hughes P., Horton T. M., Wold W. S. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J Virol. 1991 Aug;65(8):4114–4123. doi: 10.1128/jvi.65.8.4114-4123.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorman C., Padmanabhan R., Howard B. H. High efficiency DNA-mediated transformation of primate cells. Science. 1983 Aug 5;221(4610):551–553. doi: 10.1126/science.6306768. [DOI] [PubMed] [Google Scholar]
- Grunhaus A., Cho S., Horwitz M. S. Association of vaccinia virus-expressed adenovirus E3-19K glycoprotein with class I MHC and its effects on virulence in a murine pneumonia model. Virology. 1994 May 1;200(2):535–546. doi: 10.1006/viro.1994.1216. [DOI] [PubMed] [Google Scholar]
- Guida J. D., Fejer G., Pirofski L. A., Brosnan C. F., Horwitz M. S. Mouse adenovirus type 1 causes a fatal hemorrhagic encephalomyelitis in adult C57BL/6 but not BALB/c mice. J Virol. 1995 Dec;69(12):7674–7681. doi: 10.1128/jvi.69.12.7674-7681.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guss B., Eliasson M., Olsson A., Uhlén M., Frej A. K., Jörnvall H., Flock J. I., Lindberg M. Structure of the IgG-binding regions of streptococcal protein G. EMBO J. 1986 Jul;5(7):1567–1575. doi: 10.1002/j.1460-2075.1986.tb04398.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARTLEY J. W., ROWE W. P. A new mouse virus apparently related to the adenovirus group. Virology. 1960 Jul;11:645–647. doi: 10.1016/0042-6822(60)90109-4. [DOI] [PubMed] [Google Scholar]
- Heck F. C., Jr, Sheldon W. G., Gleiser C. A. Pathogenesis of experimentally produced mouse adenovirus infection in mice. Am J Vet Res. 1972 Apr;33(4):841–846. [PubMed] [Google Scholar]
- Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
- Kelly T. J., Jr, Lewis A. M., Jr Use of nondefective adenovirus-simian virus 40 hybrids for mapping the simian virus 40 genome. J Virol. 1973 Sep;12(3):643–652. doi: 10.1128/jvi.12.3.643-652.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerr C., Sadowski P. D. Gene 6 exonuclease of bacteriophage T7. II. Mechanism of the reaction. J Biol Chem. 1972 Jan 10;247(1):311–318. [PubMed] [Google Scholar]
- Kring S. C., Ball A. O., Spindler K. R. Transcription mapping of mouse adenovirus type 1 early region 4. Virology. 1992 Sep;190(1):248–255. doi: 10.1016/0042-6822(92)91211-c. [DOI] [PubMed] [Google Scholar]
- Kring S. C., King C. S., Spindler K. R. Susceptibility and signs associated with mouse adenovirus type 1 infection of adult outbred Swiss mice. J Virol. 1995 Dec;69(12):8084–8088. doi: 10.1128/jvi.69.12.8084-8088.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kring S. C., Spindler K. R. Sequence of mouse adenovirus type 1 DNA encoding the amino terminus of protein IVa2. Nucleic Acids Res. 1990 Jul 11;18(13):4003–4003. doi: 10.1093/nar/18.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine A. J. The adenovirus early proteins. Curr Top Microbiol Immunol. 1984;110:143–167. doi: 10.1007/978-3-642-46494-2_5. [DOI] [PubMed] [Google Scholar]
- Persson H., Signäs C., Philipson L. Purification and characterization of an early glycoprotein from adenovirus type 2-infected cells. J Virol. 1979 Mar;29(3):938–948. doi: 10.1128/jvi.29.3.938-948.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raviprakash K. S., Grunhaus A., el Kholy M. A., Horwitz M. S. The mouse adenovirus type 1 contains an unusual E3 region. J Virol. 1989 Dec;63(12):5455–5458. doi: 10.1128/jvi.63.12.5455-5458.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song B., Spindler K. R., Young C. S. Sequence of the mouse adenovirus serotype-1 DNA encoding the precursor to capsid protein VI. Gene. 1995 Jan 23;152(2):279–280. doi: 10.1016/0378-1119(94)00657-e. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Sparer T. E., Tripp R. A., Dillehay D. L., Hermiston T. W., Wold W. S., Gooding L. R. The role of human adenovirus early region 3 proteins (gp19K, 10.4K, 14.5K, and 14.7K) in a murine pneumonia model. J Virol. 1996 Apr;70(4):2431–2439. doi: 10.1128/jvi.70.4.2431-2439.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tollefson A. E., Scaria A., Hermiston T. W., Ryerse J. S., Wold L. J., Wold W. S. The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol. 1996 Apr;70(4):2296–2306. doi: 10.1128/jvi.70.4.2296-2306.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tufariello J. M., Cho S., Horwitz M. S. Adenovirus E3 14.7-kilodalton protein, an antagonist of tumor necrosis factor cytolysis, increases the virulence of vaccinia virus in severe combined immunodeficient mice. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10987–10991. doi: 10.1073/pnas.91.23.10987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tufariello J., Cho S., Horwitz M. S. The adenovirus E3 14.7-kilodalton protein which inhibits cytolysis by tumor necrosis factor increases the virulence of vaccinia virus in a murine pneumonia model. J Virol. 1994 Jan;68(1):453–462. doi: 10.1128/jvi.68.1.453-462.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber J. M., Cai F., Murali R., Burnett R. M. Sequence and structural analysis of murine adenovirus type 1 hexon. J Gen Virol. 1994 Jan;75(Pt 1):141–147. doi: 10.1099/0022-1317-75-1-141. [DOI] [PubMed] [Google Scholar]
- Wold W. S., Gooding L. R. Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology. 1991 Sep;184(1):1–8. doi: 10.1016/0042-6822(91)90815-s. [DOI] [PubMed] [Google Scholar]
- Zemmour J., Little A. M., Schendel D. J., Parham P. The HLA-A,B "negative" mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol. 1992 Mar 15;148(6):1941–1948. [PubMed] [Google Scholar]
- van der Veen J., Mes A. Experimental infection with mouse adenovirus in adult mice. Arch Gesamte Virusforsch. 1973;42(3):235–241. doi: 10.1007/BF01265648. [DOI] [PubMed] [Google Scholar]