Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Sep;70(9):5875–5883. doi: 10.1128/jvi.70.9.5875-5883.1996

In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype.

R B Roden 1, H L Greenstone 1, R Kirnbauer 1, F P Booy 1, J Jessie 1, D R Lowy 1, J T Schiller 1
PMCID: PMC190605  PMID: 8709207

Abstract

We report a system for generating infectious papillomaviruses in vitro that facilitates the analysis of papillomavirus assembly, infectivity, and serologic relatedness. Cultured hamster BPHE-1 cells harboring autonomously replicating bovine papillomavirus type 1 (BPV1) genomes were infected with recombinant Semliki Forest viruses that express the structural proteins of BPV1. When plated on C127 cells, extracts from cells expressing L1 and L2 together induced numerous transformed foci that could be specifically prevented by BPV neutralizing antibodies, demonstrating that BPV infection was responsible for the focal transformation. Extracts from BPHE-1 cells expressing L1 or L2 separately were not infectious. Although Semliki Forest virus-expressed L1 self-assembled into virus-like particles (VLPs), viral DNA was detected in particles only when L2 was coexpressed with L1, indicating that genome encapsidation requires L2. Expression of human papillomavirus type 16 (HPV16) L1 and L2 together in BPHE-1 cells also yielded infectious virus. These pseudotyped virions were neutralized by antiserum to HPV16 VLPs derived from European (114/K) or African (Z-1194) HPV16 variants but not by antisera to BPV VLPs, to a poorly assembling mutant HPV16 L1 protein, or to VLPs of closely related genital HPV types. Extracts from BPHE-1 cells coexpressing BPV L1 and HPV16 L2 or HPV16 L1 and BPV L2 were not infectious. We conclude that (i) mouse C127 cells express the cell surface receptor for HPV16 and are able to uncoat HPV16 capsids; (ii) if a papillomavirus DNA packaging signal exists, then it is conserved between the BPV and HPV16 genomes; (iii) functional L1-L2 interaction exhibits type specificity; and (iv) protection by HPV virus-like particle vaccines is likely to be type specific.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACK P. H., CRAWFORD E. M., CRAWFORD L. V. THE PURIFICATION OF SIMIAN VIRUS 40. Virology. 1964 Nov;24:381–387. doi: 10.1016/0042-6822(64)90175-8. [DOI] [PubMed] [Google Scholar]
  2. Berglund P., Sjöberg M., Garoff H., Atkins G. J., Sheahan B. J., Liljeström P. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology (N Y) 1993 Aug;11(8):916–920. doi: 10.1038/nbt0893-916. [DOI] [PubMed] [Google Scholar]
  3. Booy F. P., Newcomb W. W., Trus B. L., Brown J. C., Baker T. S., Steven A. C. Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell. 1991 Mar 8;64(5):1007–1015. doi: 10.1016/0092-8674(91)90324-r. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  5. Breitburd F., Kirnbauer R., Hubbert N. L., Nonnenmacher B., Trin-Dinh-Desmarquet C., Orth G., Schiller J. T., Lowy D. R. Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol. 1995 Jun;69(6):3959–3963. doi: 10.1128/jvi.69.6.3959-3963.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CRAWFORD L. V., CRAWFORD E. M., WATSONDH The physical characteristics of polyoma virus. I. Two types of particle. Virology. 1962 Oct;18:170–176. doi: 10.1016/0042-6822(62)90002-8. [DOI] [PubMed] [Google Scholar]
  7. Cheng G., Icenogle J. P., Kirnbauer R., Hubbert N. L., St Louis M. E., Han C., Svare E. I., Kjaer S. K., Lowy D. R., Schiller J. T. Divergent human papillomavirus type 16 variants are serologically cross-reactive. J Infect Dis. 1995 Dec;172(6):1584–1587. doi: 10.1093/infdis/172.6.1584. [DOI] [PubMed] [Google Scholar]
  8. Christensen N. D., Höpfl R., DiAngelo S. L., Cladel N. M., Patrick S. D., Welsh P. A., Budgeon L. R., Reed C. A., Kreider J. W. Assembled baculovirus-expressed human papillomavirus type 11 L1 capsid protein virus-like particles are recognized by neutralizing monoclonal antibodies and induce high titres of neutralizing antibodies. J Gen Virol. 1994 Sep;75(Pt 9):2271–2276. doi: 10.1099/0022-1317-75-9-2271. [DOI] [PubMed] [Google Scholar]
  9. Christensen N. D., Kreider J. W. Antibody-mediated neutralization in vivo of infectious papillomaviruses. J Virol. 1990 Jul;64(7):3151–3156. doi: 10.1128/jvi.64.7.3151-3156.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cowsert L. M., Pilacinski W. P., Jenson A. B. Identification of the bovine papillomavirus L1 gene product using monoclonal antibodies. Virology. 1988 Aug;165(2):613–615. doi: 10.1016/0042-6822(88)90608-3. [DOI] [PubMed] [Google Scholar]
  11. Dollard S. C., Wilson J. L., Demeter L. M., Bonnez W., Reichman R. C., Broker T. R., Chow L. T. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. OFF. Genes Dev. 1992 Jul;6(7):1131–1142. doi: 10.1101/gad.6.7.1131. [DOI] [PubMed] [Google Scholar]
  12. Dvoretzky I., Shober R., Chattopadhyay S. K., Lowy D. R. A quantitative in vitro focus assay for bovine papilloma virus. Virology. 1980 Jun;103(2):369–375. doi: 10.1016/0042-6822(80)90195-6. [DOI] [PubMed] [Google Scholar]
  13. Hagensee M. E., Yaegashi N., Galloway D. A. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol. 1993 Jan;67(1):315–322. doi: 10.1128/jvi.67.1.315-322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heino P., Dillner J., Schwartz S. Human papillomavirus type 16 capsid proteins produced from recombinant Semliki Forest virus assemble into virus-like particles. Virology. 1995 Dec 20;214(2):349–359. doi: 10.1006/viro.1995.0044. [DOI] [PubMed] [Google Scholar]
  15. Kirnbauer R., Booy F., Cheng N., Lowy D. R., Schiller J. T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12180–12184. doi: 10.1073/pnas.89.24.12180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirnbauer R., Chandrachud L. M., O'Neil B. W., Wagner E. R., Grindlay G. J., Armstrong A., McGarvie G. M., Schiller J. T., Lowy D. R., Campo M. S. Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization. Virology. 1996 May 1;219(1):37–44. doi: 10.1006/viro.1996.0220. [DOI] [PubMed] [Google Scholar]
  17. Kirnbauer R., Taub J., Greenstone H., Roden R., Dürst M., Gissmann L., Lowy D. R., Schiller J. T. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993 Dec;67(12):6929–6936. doi: 10.1128/jvi.67.12.6929-6936.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kreider J. W., Howett M. K., Leure-Dupree A. E., Zaino R. J., Weber J. A. Laboratory production in vivo of infectious human papillomavirus type 11. J Virol. 1987 Feb;61(2):590–593. doi: 10.1128/jvi.61.2.590-593.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Law M. F., Lowy D. R., Dvoretzky I., Howley P. M. Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proc Natl Acad Sci U S A. 1981 May;78(5):2727–2731. doi: 10.1073/pnas.78.5.2727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liljeström P., Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 1991 Dec;9(12):1356–1361. doi: 10.1038/nbt1291-1356. [DOI] [PubMed] [Google Scholar]
  21. Mallon R. G., Wojciechowicz D., Defendi V. DNA-binding activity of papillomavirus proteins. J Virol. 1987 May;61(5):1655–1660. doi: 10.1128/jvi.61.5.1655-1660.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meyers C., Frattini M. G., Hudson J. B., Laimins L. A. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science. 1992 Aug 14;257(5072):971–973. doi: 10.1126/science.1323879. [DOI] [PubMed] [Google Scholar]
  23. Müller M., Gissmann L., Cristiano R. J., Sun X. Y., Frazer I. H., Jenson A. B., Alonso A., Zentgraf H., Zhou J. Papillomavirus capsid binding and uptake by cells from different tissues and species. J Virol. 1995 Feb;69(2):948–954. doi: 10.1128/jvi.69.2.948-954.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pisani P., Parkin D. M., Ferlay J. Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer. 1993 Dec 2;55(6):891–903. doi: 10.1002/ijc.2910550604. [DOI] [PubMed] [Google Scholar]
  25. Robbins J. B., Schneerson R., Szu S. C. Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J Infect Dis. 1995 Jun;171(6):1387–1398. doi: 10.1093/infdis/171.6.1387. [DOI] [PubMed] [Google Scholar]
  26. Roden R. B., Hubbert N. L., Kirnbauer R., Breitburd F., Lowy D. R., Schiller J. T. Papillomavirus L1 capsids agglutinate mouse erythrocytes through a proteinaceous receptor. J Virol. 1995 Aug;69(8):5147–5151. doi: 10.1128/jvi.69.8.5147-5151.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roden R. B., Hubbert N. L., Kirnbauer R., Christensen N. D., Lowy D. R., Schiller J. T. Assessment of the serological relatedness of genital human papillomaviruses by hemagglutination inhibition. J Virol. 1996 May;70(5):3298–3301. doi: 10.1128/jvi.70.5.3298-3301.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roden R. B., Kirnbauer R., Jenson A. B., Lowy D. R., Schiller J. T. Interaction of papillomaviruses with the cell surface. J Virol. 1994 Nov;68(11):7260–7266. doi: 10.1128/jvi.68.11.7260-7266.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roden R. B., Weissinger E. M., Henderson D. W., Booy F., Kirnbauer R., Mushinski J. F., Lowy D. R., Schiller J. T. Neutralization of bovine papillomavirus by antibodies to L1 and L2 capsid proteins. J Virol. 1994 Nov;68(11):7570–7574. doi: 10.1128/jvi.68.11.7570-7574.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rose R. C., Bonnez W., Da Rin C., McCance D. J., Reichman R. C. Serological differentiation of human papillomavirus types 11, 16 and 18 using recombinant virus-like particles. J Gen Virol. 1994 Sep;75(Pt 9):2445–2449. doi: 10.1099/0022-1317-75-9-2445. [DOI] [PubMed] [Google Scholar]
  31. Rose R. C., Bonnez W., Reichman R. C., Garcea R. L. Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol. 1993 Apr;67(4):1936–1944. doi: 10.1128/jvi.67.4.1936-1944.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sarver N., Byrne J. C., Howley P. M. Transformation and replication in mouse cells of a bovine papillomavirus--pML2 plasmid vector that can be rescued in bacteria. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7147–7151. doi: 10.1073/pnas.79.23.7147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sasagawa T., Pushko P., Steers G., Gschmeissner S. E., Hajibagheri M. A., Finch J., Crawford L., Tommasino M. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology. 1995 Jan 10;206(1):126–135. doi: 10.1016/s0042-6822(95)80027-1. [DOI] [PubMed] [Google Scholar]
  34. Schiller J. T., Okun M. M. Papillomavirus vaccines: current status and future prospects. Adv Dermatol. 1996;11:355–381. [PubMed] [Google Scholar]
  35. Seedorf K., Krämmer G., Dürst M., Suhai S., Röwekamp W. G. Human papillomavirus type 16 DNA sequence. Virology. 1985 Aug;145(1):181–185. doi: 10.1016/0042-6822(85)90214-4. [DOI] [PubMed] [Google Scholar]
  36. Smith L. H., Foster C., Hitchcock M. E., Leiserowitz G. S., Hall K., Isseroff R., Christensen N. D., Kreider J. W. Titration of HPV-11 infectivity and antibody neutralization can be measured in vitro. J Invest Dermatol. 1995 Sep;105(3):438–444. doi: 10.1111/1523-1747.ep12321173. [DOI] [PubMed] [Google Scholar]
  37. Suzich J. A., Ghim S. J., Palmer-Hill F. J., White W. I., Tamura J. K., Bell J. A., Newsome J. A., Jenson A. B., Schlegel R. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11553–11557. doi: 10.1073/pnas.92.25.11553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Volpers C., Schirmacher P., Streeck R. E., Sapp M. Assembly of the major and the minor capsid protein of human papillomavirus type 33 into virus-like particles and tubular structures in insect cells. Virology. 1994 May 1;200(2):504–512. doi: 10.1006/viro.1994.1213. [DOI] [PubMed] [Google Scholar]
  39. Volpers C., Unckell F., Schirmacher P., Streeck R. E., Sapp M. Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells. J Virol. 1995 Jun;69(6):3258–3264. doi: 10.1128/jvi.69.6.3258-3264.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhang Y. L., Lewis A., Jr, Wade-Glass M., Schlegel R. Levels of bovine papillomavirus RNA and protein expression correlate with variations in the tumorigenic phenotype of hamster cells. J Virol. 1987 Sep;61(9):2924–2928. doi: 10.1128/jvi.61.9.2924-2928.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhou J., Stenzel D. J., Sun X. Y., Frazer I. H. Synthesis and assembly of infectious bovine papillomavirus particles in vitro. J Gen Virol. 1993 Apr;74(Pt 4):763–768. doi: 10.1099/0022-1317-74-4-763. [DOI] [PubMed] [Google Scholar]
  42. Zhou J., Sun X. Y., Louis K., Frazer I. H. Interaction of human papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N-terminal sequence. J Virol. 1994 Feb;68(2):619–625. doi: 10.1128/jvi.68.2.619-625.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhou J., Sun X. Y., Stenzel D. J., Frazer I. H. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology. 1991 Nov;185(1):251–257. doi: 10.1016/0042-6822(91)90772-4. [DOI] [PubMed] [Google Scholar]
  44. zur Hausen H. Molecular pathogenesis of cancer of the cervix and its causation by specific human papillomavirus types. Curr Top Microbiol Immunol. 1994;186:131–156. doi: 10.1007/978-3-642-78487-3_8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES