Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Sep;70(9):6143–6150. doi: 10.1128/jvi.70.9.6143-6150.1996

The structurally diverse intergenic regions of respiratory syncytial virus do not modulate sequential transcription by a dicistronic minigenome.

L Kuo 1, R Fearns 1, P L Collins 1
PMCID: PMC190637  PMID: 8709239

Abstract

The first nine genes of respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus, are separated by intergenic regions which range in size from 1 to 52 nucleotides for strain A2 and lack obvious consensus elements except that each ends in an A (genome sense). Their significance for gene expression was investigated by using RSV-CAT-LUC RNA, a helper-dependent cDNA-encoded dicistronic analog of RSV genomic RNA in which the viral genes were replaced by a negative-sense copy of the translational open reading frame (ORF) encoding chloramphenicol acetyltransferase (CAT) as the upstream, leader-proximal gene and that encoding luciferase (LUC) as the downstream gene. These foreign ORFs were flanked by the RSV gene-start (GS) and gene-end (GE) transcription signals and separated by the naturally occurring G/F intergenic region. The RSV-CAT-LUC minigenome was synthesized in vitro and transfected into RSV-infected cells, and synthesis of the CAT and LUC mRNAs was monitored by enzyme assay and Northern (RNA) blot hybridization. Surprisingly, substitution of each of the other naturally occurring RSV intergenic regions in turn did not significantly alter the absolute or relative amounts of the two mRNAs. Substitution of a nonnatural 10-nucleotide intergenic region, or elimination of the intergenic region altogether, also had little effect on the level of expression of the two genes. Four of the minigenome variants containing naturally occurring intergenic regions were modified further by replacing part of the LUC ORF with a second copy of the CAT ORF, so that each of the two mRNAs would hybridize equally with a CAT-specific probe and their relative molar amounts could be determined. The level of expression of the downstream gene was 0.30 to 0.36 that of the upstream one. This determined the magnitude of RSV transcriptional polarity across a gene pair and confirmed that this value was very similar among the various intergenic regions. Minigenome transcription also yielded a CAT-LUC readthrough mRNA at a level 0.10 to 0.13 that of the LUC mRNA. In summary, the structurally diverse RSV intergenic regions do not appear to play a role in modulating RSV gene expression.

Full Text

The Full Text of this article is available as a PDF (655.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anchordoguy T. J., Crawford D. L., Hardewig I., Hand S. C. Heterogeneity of DNA binding to membranes used in quantitative dot blots. Biotechniques. 1996 May;20(5):754–756. doi: 10.2144/96205bm03. [DOI] [PubMed] [Google Scholar]
  2. Collins P. L., Dickens L. E., Buckler-White A., Olmsted R. A., Spriggs M. K., Camargo E., Coelingh K. V. Nucleotide sequences for the gene junctions of human respiratory syncytial virus reveal distinctive features of intergenic structure and gene order. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4594–4598. doi: 10.1073/pnas.83.13.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collins P. L., Hill M. G., Camargo E., Grosfeld H., Chanock R. M., Murphy B. R. Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5' proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11563–11567. doi: 10.1073/pnas.92.25.11563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collins P. L., Hill M. G., Cristina J., Grosfeld H. Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):81–85. doi: 10.1073/pnas.93.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins P. L., Huang Y. T., Wertz G. W. Identification of a tenth mRNA of respiratory syncytial virus and assignment of polypeptides to the 10 viral genes. J Virol. 1984 Feb;49(2):572–578. doi: 10.1128/jvi.49.2.572-578.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins P. L., Mink M. A., Stec D. S. Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9663–9667. doi: 10.1073/pnas.88.21.9663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins P. L., Olmsted R. A., Johnson P. R. The small hydrophobic protein of human respiratory syncytial virus: comparison between antigenic subgroups A and B. J Gen Virol. 1990 Jul;71(Pt 7):1571–1576. doi: 10.1099/0022-1317-71-7-1571. [DOI] [PubMed] [Google Scholar]
  8. Collins P. L., Olmsted R. A., Spriggs M. K., Johnson P. R., Buckler-White A. J. Gene overlap and site-specific attenuation of transcription of the viral polymerase L gene of human respiratory syncytial virus. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5134–5138. doi: 10.1073/pnas.84.15.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collins P. L., Wertz G. W. cDNA cloning and transcriptional mapping of nine polyadenylylated RNAs encoded by the genome of human respiratory syncytial virus. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3208–3212. doi: 10.1073/pnas.80.11.3208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dickens L. E., Collins P. L., Wertz G. W. Transcriptional mapping of human respiratory syncytial virus. J Virol. 1984 Nov;52(2):364–369. doi: 10.1128/jvi.52.2.364-369.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Emerson S. U. Reconstitution studies detect a single polymerase entry site on the vesicular stomatitis virus genome. Cell. 1982 Dec;31(3 Pt 2):635–642. doi: 10.1016/0092-8674(82)90319-1. [DOI] [PubMed] [Google Scholar]
  12. Grosfeld H., Hill M. G., Collins P. L. RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol. 1995 Sep;69(9):5677–5686. doi: 10.1128/jvi.69.9.5677-5686.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gupta K. C., Kingsbury D. W. Polytranscripts of Sendai virus do not contain intervening polyadenylate sequences. Virology. 1985 Feb;141(1):102–109. doi: 10.1016/0042-6822(85)90186-2. [DOI] [PubMed] [Google Scholar]
  14. Iverson L. E., Rose J. K. Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell. 1981 Feb;23(2):477–484. doi: 10.1016/0092-8674(81)90143-4. [DOI] [PubMed] [Google Scholar]
  15. Johnson P. R., Collins P. L. Sequence comparison of the phosphoprotein mRNAs of antigenic subgroups A and B of human respiratory syncytial virus identifies a highly divergent domain in the predicted protein. J Gen Virol. 1990 Feb;71(Pt 2):481–485. doi: 10.1099/0022-1317-71-2-481. [DOI] [PubMed] [Google Scholar]
  16. Johnson P. R., Collins P. L. The A and B subgroups of human respiratory syncytial virus: comparison of intergenic and gene-overlap sequences. J Gen Virol. 1988 Nov;69(Pt 11):2901–2906. doi: 10.1099/0022-1317-69-11-2901. [DOI] [PubMed] [Google Scholar]
  17. Johnson P. R., Collins P. L. The fusion glycoproteins of human respiratory syncytial virus of subgroups A and B: sequence conservation provides a structural basis for antigenic relatedness. J Gen Virol. 1988 Oct;69(Pt 10):2623–2628. doi: 10.1099/0022-1317-69-10-2623. [DOI] [PubMed] [Google Scholar]
  18. Masters P. S., Samuel C. E. Detection of in vivo synthesis of polycistronic mRNAs of vesicular stomatitis virus. Virology. 1984 Apr 30;134(2):277–286. doi: 10.1016/0042-6822(84)90297-6. [DOI] [PubMed] [Google Scholar]
  19. Samal S. K., Collins P. L. RNA replication by a respiratory syncytial virus RNA analog does not obey the rule of six and retains a nonviral trinucleotide extension at the leader end. J Virol. 1996 Aug;70(8):5075–5082. doi: 10.1128/jvi.70.8.5075-5082.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Teninges D., Bras F., Dezélée S. Genome organization of the sigma rhabdovirus: six genes and a gene overlap. Virology. 1993 Apr;193(2):1018–1023. doi: 10.1006/viro.1993.1219. [DOI] [PubMed] [Google Scholar]
  21. Vidal S., Kolakofsky D. Modified model for the switch from Sendai virus transcription to replication. J Virol. 1989 May;63(5):1951–1958. doi: 10.1128/jvi.63.5.1951-1958.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang Y., McWilliam S. M., Cowley J. A., Walker P. J. Complex genome organization in the GNS-L intergenic region of Adelaide River rhabdovirus. Virology. 1994 Aug 15;203(1):63–72. doi: 10.1006/viro.1994.1455. [DOI] [PubMed] [Google Scholar]
  23. Yu Q., Hardy R. W., Wertz G. W. Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol. 1995 Apr;69(4):2412–2419. doi: 10.1128/jvi.69.4.2412-2419.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES