Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Sep;70(9):6296–6303. doi: 10.1128/jvi.70.9.6296-6303.1996

Peripheral blood mononuclear cells from sheep infected with a variant of bovine leukemia virus synthesize envelope glycoproteins but fail to induce syncytia in culture.

E R Johnston 1, M A Powers 1, L C Kidd 1, K Radke 1
PMCID: PMC190655  PMID: 8709257

Abstract

Peripheral blood mononuclear cells (PBMCs) infected with the oncogenic retrovirus bovine leukemia virus (BLV) produce virus when cultured briefly. BLV can be transmitted in cocultures to adherent susceptible cells, which become infected, express viral proteins, and fuse into multinucleated syncytia several days later. PBMCs from 3 of 10 BLV-infected sheep displayed a lifelong deficiency in induction of syncytium formation among indicator cells in culture, although large numbers of PBMCs synthesized viral transcripts or capsid protein. Since the infected, syncytium-deficient PBMCs were > or = 97% B cells, the deficiency could not be attributed to altered host cell tropism. The syncytium-deficient phenotype was recapitulated in newly infected sheep, demonstrating that this property is regulated by the viral genotype. The alteration in the BLV genome delayed but did not prohibit the establishment of BLV infection in vivo. Envelope glycoproteins were synthesized in syncytium-deficient PBMCs, translocated to the cell surface, and incorporated into virions. However, monoclonal antibodies specific for the BLV surface glycoprotein did not stain fixed PBMCs of the syncytium-deficient phenotype. Moreover, an animal with syncytium-deficient PBMCs had lower titers of neutralizing antibodies throughout the first 5 years of infection than an animal with similar numbers of infected PBMCs of the syncytium-inducing phenotype. The syncytium-deficient variant productively infected indicator cells at greatly reduced efficiency, showing that the alteration affects an early step in viral entry or replication. These results suggest that the alteration maps in the env gene or in a gene whose product affects the maturation or conformation, and consequently the function, of the envelope protein complex.

Full Text

The Full Text of this article is available as a PDF (464.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andeweg A. C., Groenink M., Leeflang P., de Goede R. E., Osterhaus A. D., Tersmette M., Bosch M. L. Genetic and functional analysis of a set of HIV-1 envelope genes obtained from biological clones with varying syncytium-inducing capacities. AIDS Res Hum Retroviruses. 1992 Oct;8(10):1803–1813. doi: 10.1089/aid.1992.8.1803. [DOI] [PubMed] [Google Scholar]
  2. Andeweg A. C., Leeflang P., Osterhaus A. D., Bosch M. L. Both the V2 and V3 regions of the human immunodeficiency virus type 1 surface glycoprotein functionally interact with other envelope regions in syncytium formation. J Virol. 1993 Jun;67(6):3232–3239. doi: 10.1128/jvi.67.6.3232-3239.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asjö B., Morfeldt-Månson L., Albert J., Biberfeld G., Karlsson A., Lidman K., Fenyö E. M. Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet. 1986 Sep 20;2(8508):660–662. [PubMed] [Google Scholar]
  4. Benton C. V., Soria A. E., Gilden R. V. Direct syncytial assay for the quantitation of bovine leukemia virus. Infect Immun. 1978 Apr;20(1):307–309. doi: 10.1128/iai.20.1.307-309.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruck C., Mathot S., Portetelle D., Berte C., Franssen J. D., Herion P., Burny A. Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51. Virology. 1982 Oct 30;122(2):342–352. doi: 10.1016/0042-6822(82)90234-3. [DOI] [PubMed] [Google Scholar]
  6. Bruck C., Portetelle D., Burny A., Zavada J. Topographical analysis by monoclonal antibodies of BLV-gp51 epitopes involved in viral functions. Virology. 1982 Oct 30;122(2):353–362. doi: 10.1016/0042-6822(82)90235-5. [DOI] [PubMed] [Google Scholar]
  7. Callebaut I., Portetelle D., Burny A., Mornon J. P. Identification of functional sites on bovine leukemia virus envelope glycoproteins using structural and immunological data. Eur J Biochem. 1994 Jun 1;222(2):405–414. doi: 10.1111/j.1432-1033.1994.tb18879.x. [DOI] [PubMed] [Google Scholar]
  8. Cheng-Mayer C., Seto D., Tateno M., Levy J. A. Biologic features of HIV-1 that correlate with virulence in the host. Science. 1988 Apr 1;240(4848):80–82. doi: 10.1126/science.2832945. [DOI] [PubMed] [Google Scholar]
  9. Delamarre L., Pique C., Pham D., Tursz T., Dokhélar M. C. Identification of functional regions in the human T-cell leukemia virus type I SU glycoprotein. J Virol. 1994 Jun;68(6):3544–3549. doi: 10.1128/jvi.68.6.3544-3549.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deschamps J., Kettmann R., Burny A. Experiments with cloned complete tumor-derived bovine leukemia virus information prove that the virus is totally exogenous to its target animal species. J Virol. 1981 Nov;40(2):605–609. doi: 10.1128/jvi.40.2.605-609.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Diglio C. A., Ferrer J. F. Induction of syncytia by the bovine C-type leukemia virus. Cancer Res. 1976 Mar;36(3):1056–1067. [PubMed] [Google Scholar]
  12. Ferrer J. F., Cabradilla C., Gupta P. Use of a feline cell line in the syncytia infectivity assay for the detection of bovine leukemia virus infection in cattle. Am J Vet Res. 1981 Jan;42(1):9–14. [PubMed] [Google Scholar]
  13. Fischinger P. J., Blevins C. S., Nomura S. Simple, quantitative assay for both xenotropic murine leukemia and ecotropic feline leukemia viruses. J Virol. 1974 Jul;14(1):177–179. doi: 10.1128/jvi.14.1.177-179.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graves D. C., Jones L. V. Early syncytium formation by bovine leukemia virus. J Virol. 1981 Jun;38(3):1055–1063. doi: 10.1128/jvi.38.3.1055-1063.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunter E., Swanstrom R. Retrovirus envelope glycoproteins. Curr Top Microbiol Immunol. 1990;157:187–253. doi: 10.1007/978-3-642-75218-6_7. [DOI] [PubMed] [Google Scholar]
  16. Kidd L. C., Radke K. Lymphocyte activators elicit bovine leukemia virus expression differently as asymptomatic infection progresses. Virology. 1996 Mar 1;217(1):167–177. doi: 10.1006/viro.1996.0104. [DOI] [PubMed] [Google Scholar]
  17. Lagarias D. M., Radke K. Transcriptional activation of bovine leukemia virus in blood cells from experimentally infected, asymptomatic sheep with latent infections. J Virol. 1989 May;63(5):2099–2107. doi: 10.1128/jvi.63.5.2099-2107.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lagarias D. M., Radke K. Transient increases of blood mononuclear cells that could express bovine leukemia virus early after experimental infection of sheep. Microb Pathog. 1990 Sep;9(3):147–158. doi: 10.1016/0882-4010(90)90018-l. [DOI] [PubMed] [Google Scholar]
  19. Mamoun R. Z., Morisson M., Rebeyrotte N., Busetta B., Couez D., Kettmann R., Hospital M., Guillemain B. Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J Virol. 1990 Sep;64(9):4180–4188. doi: 10.1128/jvi.64.9.4180-4188.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mansky L. M., Temin H. M. Lower mutation rate of bovine leukemia virus relative to that of spleen necrosis virus. J Virol. 1994 Jan;68(1):494–499. doi: 10.1128/jvi.68.1.494-499.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pique C., Tursz T., Dokhelar M. C. Mutations introduced along the HTLV-I envelope gene result in a non-functional protein: a basis for envelope conservation? EMBO J. 1990 Dec;9(13):4243–4248. doi: 10.1002/j.1460-2075.1990.tb07872.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Powers M. A., Radke K. Activation of bovine leukemia virus transcription in lymphocytes from infected sheep: rapid transition through early to late gene expression. J Virol. 1992 Aug;66(8):4769–4777. doi: 10.1128/jvi.66.8.4769-4777.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Radke K., Grossman D., Kidd L. C. Humoral immune response of experimentally infected sheep defines two early periods of bovine leukemia virus replication. Microb Pathog. 1990 Sep;9(3):159–171. doi: 10.1016/0882-4010(90)90019-m. [DOI] [PubMed] [Google Scholar]
  24. Radke K., Sigala T. J., Grossman D. Transcription of bovine leukemia virus in peripheral blood cells obtained during early infection in vivo. Microb Pathog. 1992 May;12(5):319–331. doi: 10.1016/0882-4010(92)90095-6. [DOI] [PubMed] [Google Scholar]
  25. Schuitemaker H., Koot M., Kootstra N. A., Dercksen M. W., de Goede R. E., van Steenwijk R. P., Lange J. M., Schattenkerk J. K., Miedema F., Tersmette M. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol. 1992 Mar;66(3):1354–1360. doi: 10.1128/jvi.66.3.1354-1360.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schuitemaker H., Kootstra N. A., de Goede R. E., de Wolf F., Miedema F., Tersmette M. Monocytotropic human immunodeficiency virus type 1 (HIV-1) variants detectable in all stages of HIV-1 infection lack T-cell line tropism and syncytium-inducing ability in primary T-cell culture. J Virol. 1991 Jan;65(1):356–363. doi: 10.1128/jvi.65.1.356-363.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schultz A. M., Copeland T. D., Oroszlan S. The envelope proteins of bovine leukemia virus: purification and sequence analysis. Virology. 1984 Jun;135(2):417–427. doi: 10.1016/0042-6822(84)90197-1. [DOI] [PubMed] [Google Scholar]
  28. Schwartz I., Bensaid A., Polack B., Perrin B., Berthelemy M., Levy D. In vivo leukocyte tropism of bovine leukemia virus in sheep and cattle. J Virol. 1994 Jul;68(7):4589–4596. doi: 10.1128/jvi.68.7.4589-4596.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith J. W., Hayward C. P., Warkentin T. E., Horsewood P., Kelton J. G. Investigation of human platelet alloantigens and glycoproteins using non-radioactive immunoprecipitation. J Immunol Methods. 1993 Jan 14;158(1):77–85. doi: 10.1016/0022-1759(93)90260-e. [DOI] [PubMed] [Google Scholar]
  30. Stamatatos L., Cheng-Mayer C. Evidence that the structural conformation of envelope gp120 affects human immunodeficiency virus type 1 infectivity, host range, and syncytium-forming ability. J Virol. 1993 Sep;67(9):5635–5639. doi: 10.1128/jvi.67.9.5635-5639.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tersmette M., de Goede R. E., Al B. J., Winkel I. N., Gruters R. A., Cuypers H. T., Huisman H. G., Miedema F. Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J Virol. 1988 Jun;62(6):2026–2032. doi: 10.1128/jvi.62.6.2026-2032.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van der Maaten M. J., Miller J. M. Use of a continuous feline cell line for virologic and serologic investigations of bovine leukemia virus infections. Am J Vet Res. 1980 Nov;41(11):1785–1788. [PubMed] [Google Scholar]
  33. Vonèche V., Portetelle D., Kettmann R., Willems L., Limbach K., Paoletti E., Ruysschaert J. M., Burny A., Brasseur R. Fusogenic segments of bovine leukemia virus and simian immunodeficiency virus are interchangeable and mediate fusion by means of oblique insertion in the lipid bilayer of their target cells. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3810–3814. doi: 10.1073/pnas.89.9.3810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wattel E., Vartanian J. P., Pannetier C., Wain-Hobson S. Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J Virol. 1995 May;69(5):2863–2868. doi: 10.1128/jvi.69.5.2863-2868.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White J. M. Membrane fusion. Science. 1992 Nov 6;258(5084):917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  36. Willems L., Kerkhofs P., Burny A., Mammerickx M., Kettmann R. Lack of LTR and ENV genetic variation during bovine leukemia virus-induced leukemogenesis. Virology. 1995 Jan 10;206(1):769–772. doi: 10.1016/s0042-6822(95)80007-7. [DOI] [PubMed] [Google Scholar]
  37. Willems L., Thienpont E., Kerkhofs P., Burny A., Mammerickx M., Kettmann R. Bovine leukemia virus, an animal model for the study of intrastrain variability. J Virol. 1993 Feb;67(2):1086–1089. doi: 10.1128/jvi.67.2.1086-1089.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES