Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Sep;70(9):6336–6339. doi: 10.1128/jvi.70.9.6336-6339.1996

Inhibition of herpes simplex virus type 1 immediate-early gene expression by alpha interferon is not VP16 specific.

M J Nicholl 1, C M Preston 1
PMCID: PMC190659  PMID: 8709261

Abstract

Pretreatment of tissue culture cells with alpha interferon (IFN-alpha) inhibits the transcription of herpes simplex virus type 1 (HSV-1) immediate-early (IE) genes, an effect which has been attributed to reduced transactivation of IE promoters by the virion protein VP16. Our previous demonstration that IFN-alpha inhibited the replication of the HSV-1 mutant in1814, which has a mutated VP16 unable to activate IE transcription, appeared to be incompatible with IFN-alpha having an effect on VP16 action (D. R. S. Jamieson, L. H. Robinson, J. I. Daksis, M. J. Nicholl, and C. M. Preston, J. Gen. Virol. 76:1417-1431, 1995). To investigate this observation further, cells were infected with a derivative of in1814 containing the lacZ gene controlled by the human cytomegalovirus IE promoter. The accumulation of HSV-1 IE RNA species was inhibited by IFN-alpha in these cells to the same extent as in cells infected with a virus rescued at the VP16 locus, and production of lacZ-specific RNA was also reduced, demonstrating that IFN-alpha can inhibit expression from a heterologous promoter that is not responsive to VP16. To provide a means of investigating the activity of VP16 on IE promoters not located in the HSV-1 genome, cell lines containing the neomycin phosphotransferase gene controlled by the HSV-1 IE ICPO promoter were constructed. Activation of the IE promoter by VP16 was not inhibited when the ICPO promoter was resident in the cell, demonstrating that VP16 function was unaffected by pretreatment of cells with IFN-alpha. The results suggest that IFN-alpha prevents the onset of IE transcription from the HSV-1 genome through a general mechanism rather than by having an effect specific to HSV-1 IE promoters.

Full Text

The Full Text of this article is available as a PDF (453.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ace C. I., McKee T. A., Ryan J. M., Cameron J. M., Preston C. M. Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. J Virol. 1989 May;63(5):2260–2269. doi: 10.1128/jvi.63.5.2260-2269.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boshart M., Weber F., Jahn G., Dorsch-Häsler K., Fleckenstein B., Schaffner W. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 1985 Jun;41(2):521–530. doi: 10.1016/s0092-8674(85)80025-8. [DOI] [PubMed] [Google Scholar]
  3. Brennan M. B., Stark G. R. Interferon pretreatment inhibits simian virus 40 infections by blocking the onset of early transcription. Cell. 1983 Jul;33(3):811–816. doi: 10.1016/0092-8674(83)90023-5. [DOI] [PubMed] [Google Scholar]
  4. Campbell M. E., Palfreyman J. W., Preston C. M. Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J Mol Biol. 1984 Nov 25;180(1):1–19. doi: 10.1016/0022-2836(84)90427-3. [DOI] [PubMed] [Google Scholar]
  5. Cook W. J., Coen D. M. Temporal regulation of herpes simplex virus type 1 UL24 mRNA expression via differential polyadenylation. Virology. 1996 Apr 1;218(1):204–213. doi: 10.1006/viro.1996.0180. [DOI] [PubMed] [Google Scholar]
  6. Daksis J. I., Preston C. M. Herpes simplex virus immediate early gene expression in the absence of transinduction by Vmw65 varies during the cell cycle. Virology. 1992 Jul;189(1):196–202. doi: 10.1016/0042-6822(92)90695-l. [DOI] [PubMed] [Google Scholar]
  7. De Stasio P. R., Taylor M. W. Specific effect of interferon on the herpes simplex virus type 1 transactivation event. J Virol. 1990 Jun;64(6):2588–2593. doi: 10.1128/jvi.64.6.2588-2593.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ecob-Prince M. S., Hassan K., Denheen M. T., Preston C. M. Expression of beta-galactosidase in neurons of dorsal root ganglia which are latently infected with herpes simplex virus type 1. J Gen Virol. 1995 Jun;76(Pt 6):1527–1532. doi: 10.1099/0022-1317-76-6-1527. [DOI] [PubMed] [Google Scholar]
  9. Everett R. D. The regulation of transcription of viral and cellular genes by herpesvirus immediate-early gene products (review). Anticancer Res. 1987 Jul-Aug;7(4A):589–604. [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Jamieson D. R., Robinson L. H., Daksis J. I., Nicholl M. J., Preston C. M. Quiescent viral genomes in human fibroblasts after infection with herpes simplex virus type 1 Vmw65 mutants. J Gen Virol. 1995 Jun;76(Pt 6):1417–1431. doi: 10.1099/0022-1317-76-6-1417. [DOI] [PubMed] [Google Scholar]
  12. Johnson P. A., Miyanohara A., Levine F., Cahill T., Friedmann T. Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol. 1992 May;66(5):2952–2965. doi: 10.1128/jvi.66.5.2952-2965.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LaMarco K. L., McKnight S. L. Purification of a set of cellular polypeptides that bind to the purine-rich cis-regulatory element of herpes simplex virus immediate early genes. Genes Dev. 1989 Sep;3(9):1372–1383. doi: 10.1101/gad.3.9.1372. [DOI] [PubMed] [Google Scholar]
  14. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol. 1988 Jul;69(Pt 7):1531–1574. doi: 10.1099/0022-1317-69-7-1531. [DOI] [PubMed] [Google Scholar]
  15. McKnight J. L., Kristie T. M., Roizman B. Binding of the virion protein mediating alpha gene induction in herpes simplex virus 1-infected cells to its cis site requires cellular proteins. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7061–7065. doi: 10.1073/pnas.84.20.7061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mittnacht S., Straub P., Kirchner H., Jacobsen H. Interferon treatment inhibits onset of herpes simplex virus immediate-early transcription. Virology. 1988 May;164(1):201–210. doi: 10.1016/0042-6822(88)90637-x. [DOI] [PubMed] [Google Scholar]
  17. O'Hare P., Goding C. R. Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation. Cell. 1988 Feb 12;52(3):435–445. doi: 10.1016/s0092-8674(88)80036-9. [DOI] [PubMed] [Google Scholar]
  18. Oberman F., Panet A. Characterization of the early steps of herpes simplex virus replication in interferon-treated human cells. J Interferon Res. 1989 Oct;9(5):563–571. doi: 10.1089/jir.1989.9.563. [DOI] [PubMed] [Google Scholar]
  19. Oberman F., Panet A. Inhibition of transcription of herpes simplex virus immediate early genes in interferon-treated human cells. J Gen Virol. 1988 Jun;69(Pt 6):1167–1177. doi: 10.1099/0022-1317-69-6-1167. [DOI] [PubMed] [Google Scholar]
  20. Panning B., Smiley J. R. Regulation of cellular genes transduced by herpes simplex virus. J Virol. 1989 May;63(5):1929–1937. doi: 10.1128/jvi.63.5.1929-1937.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Post L. E., Mackem S., Roizman B. Regulation of alpha genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with alpha gene promoters. Cell. 1981 May;24(2):555–565. doi: 10.1016/0092-8674(81)90346-9. [DOI] [PubMed] [Google Scholar]
  22. Preston C. M., Frame M. C., Campbell M. E. A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell. 1988 Feb 12;52(3):425–434. doi: 10.1016/s0092-8674(88)80035-7. [DOI] [PubMed] [Google Scholar]
  23. Sadowski I., Ma J., Triezenberg S., Ptashne M. GAL4-VP16 is an unusually potent transcriptional activator. Nature. 1988 Oct 6;335(6190):563–564. doi: 10.1038/335563a0. [DOI] [PubMed] [Google Scholar]
  24. Stinski M. F., Roehr T. J. Activation of the major immediate early gene of human cytomegalovirus by cis-acting elements in the promoter-regulatory sequence and by virus-specific trans-acting components. J Virol. 1985 Aug;55(2):431–441. doi: 10.1128/jvi.55.2.431-441.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Triezenberg S. J., Kingsbury R. C., McKnight S. L. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 1988 Jun;2(6):718–729. doi: 10.1101/gad.2.6.718. [DOI] [PubMed] [Google Scholar]
  26. Wilson A. C., LaMarco K., Peterson M. G., Herr W. The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein. Cell. 1993 Jul 16;74(1):115–125. doi: 10.1016/0092-8674(93)90299-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES