Abstract
Nucleotide substitutions at two positions within the open reading frame encoding the 126-kDa protein in the attenuated masked (M) strain of tobacco mosaic tobamovirus (TMV) to those found in the virulent U1-TMV genome led to the induction of near U1-TMV-like symptoms on leaves of Nicotiana tabacum L. cv. Xanthi nn by progeny virus (M. H. Shintaku, S. A. Carter, Y. Bao, and R. S. Nelson, Virology 221:218-225, 1996). In this study, further site-directed mutations were made at these positions within the M strain cDNA to determine whether the protein or nucleotide sequence directly controlled the symptom phenotype. The protein and not the nucleotide sequence directly controlled the symptom phenotype when amino acid 360 within the 126-kDa protein sequence was altered and likely controlled the symptom phenotype when amino acid 601 was altered. The effects of the substitutions at amino acid position 360 on viral protein accumulation were studied by pulse-labeling proteins in infected protoplasts. Accumulation of the 126- and 183-kDa proteins was less for an attenuated mutant than for two virulent mutants, but the viral movement protein and coat protein accumulated to levels reported to be sufficient for normal systemic symptom development. The size of necrotic local lesions on N. tabacum L. cv. Xanthi NN was negatively correlated with symptom development and accumulation of the 126-kDa protein for these mutants. With reference to this last finding, an explanation of the cause of the differing symptoms induced by these viruses is presented.
Full Text
The Full Text of this article is available as a PDF (468.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argos P. A sequence motif in many polymerases. Nucleic Acids Res. 1988 Nov 11;16(21):9909–9916. doi: 10.1093/nar/16.21.9909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asselin A., Zaitlin M. Characterization of a second protein associated with virions of tobacco mosaic virus. Virology. 1978 Nov;91(1):173–181. doi: 10.1016/0042-6822(78)90365-3. [DOI] [PubMed] [Google Scholar]
- Blum H., Gross H. J., Beier H. The expression of the TMV-specific 30-kDa protein in tobacco protoplasts is strongly and selectively enhanced by actinomycin. Virology. 1989 Mar;169(1):51–61. doi: 10.1016/0042-6822(89)90040-8. [DOI] [PubMed] [Google Scholar]
- Bruening G., Beachy R. N., Scalla R., Zaitlin M. In vitro and in vivo translation of the ribonucleic acids of a cowpea strain of tobacco mosaic virus. Virology. 1976 Jun;71(2):498–517. doi: 10.1016/0042-6822(76)90377-9. [DOI] [PubMed] [Google Scholar]
- Dawson W. O., Lehto K. M. Regulation of tobamovirus gene expression. Adv Virus Res. 1990;38:307–342. doi: 10.1016/S0065-3527(08)60865-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunigan D. D., Zaitlin M. Capping of tobacco mosaic virus RNA. Analysis of viral-coded guanylyltransferase-like activity. J Biol Chem. 1990 May 15;265(14):7779–7786. [PubMed] [Google Scholar]
- Evans R. K., Haley B. E., Roth D. A. Photoaffinity labeling of a viral induced protein from tobacco. Characterization of nucleotide-binding properties. J Biol Chem. 1985 Jun 25;260(12):7800–7804. [PubMed] [Google Scholar]
- Fernández A., Laín S., García J. A. RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli. Mapping of an RNA binding domain. Nucleic Acids Res. 1995 Apr 25;23(8):1327–1332. doi: 10.1093/nar/23.8.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gal-On A., Kaplan I., Roossinck M. J., Palukaitis P. The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function for RNA 1 in virus movement. Virology. 1994 Nov 15;205(1):280–289. doi: 10.1006/viro.1994.1644. [DOI] [PubMed] [Google Scholar]
- Goelet P., Lomonossoff G. P., Butler P. J., Akam M. E., Gait M. J., Karn J. Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5818–5822. doi: 10.1073/pnas.79.19.5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorbalenya A. E., Koonin E. V. Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Res. 1989 Nov 11;17(21):8413–8440. doi: 10.1093/nar/17.21.8413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holt C. A., Hodgson R. A., Coker F. A., Beachy R. N., Nelson R. S. Characterization of the masked strain of tobacco mosaic virus: identification of the region responsible for symptom attenuation by analysis of an infectious cDNA clone. Mol Plant Microbe Interact. 1990 Nov-Dec;3(6):417–423. doi: 10.1094/mpmi-3-417. [DOI] [PubMed] [Google Scholar]
- Ishikawa M., Meshi T., Motoyoshi F., Takamatsu N., Okada Y. In vitro mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Res. 1986 Nov 11;14(21):8291–8305. doi: 10.1093/nar/14.21.8291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa M., Meshi T., Ohno T., Okada Y. Specific cessation of minus-strand RNA accumulation at an early stage of tobacco mosaic virus infection. J Virol. 1991 Feb;65(2):861–868. doi: 10.1128/jvi.65.2.861-868.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamer G., Argos P. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 1984 Sep 25;12(18):7269–7282. doi: 10.1093/nar/12.18.7269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laín S., Riechmann J. L., García J. A. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Res. 1990 Dec 11;18(23):7003–7006. doi: 10.1093/nar/18.23.7003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malinoski F., Stollar V. Inhibition of Sindbis virus replication in Aedes albopictus cells by virazole (ribavirin) and its reversal by actinomycin: a correction. Virology. 1980 Apr 30;102(2):473–476. doi: 10.1016/0042-6822(80)90117-8. [DOI] [PubMed] [Google Scholar]
- Meshi T., Motoyoshi F., Adachi A., Watanabe Y., Takamatsu N., Okada Y. Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO J. 1988 Jun;7(6):1575–1581. doi: 10.1002/j.1460-2075.1988.tb02982.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mi S., Stollar V. Expression of Sindbis virus nsP1 and methyltransferase activity in Escherichia coli. Virology. 1991 Sep;184(1):423–427. doi: 10.1016/0042-6822(91)90862-6. [DOI] [PubMed] [Google Scholar]
- Nishiguchi M., Kikuchi S., Kiho Y., Ohno T., Meshi T., Okada Y. Molecular basis of plant viral virulence; the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Res. 1985 Aug 12;13(15):5585–5590. doi: 10.1093/nar/13.15.5585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padgett H. S., Beachy R. N. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell. 1993 May;5(5):577–586. doi: 10.1105/tpc.5.5.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rozanov M. N., Koonin E. V., Gorbalenya A. E. Conservation of the putative methyltransferase domain: a hallmark of the 'Sindbis-like' supergroup of positive-strand RNA viruses. J Gen Virol. 1992 Aug;73(Pt 8):2129–2134. doi: 10.1099/0022-1317-73-8-2129. [DOI] [PubMed] [Google Scholar]
- Shintaku M. H., Carter S. A., Bao Y., Nelson R. S. Mapping nucleotides in the 126-kDa protein gene that control the differential symptoms induced by two strains of tobacco mosaic virus. Virology. 1996 Jul 1;221(1):218–225. doi: 10.1006/viro.1996.0368. [DOI] [PubMed] [Google Scholar]
- Strauss J. H., Strauss E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe Y., Morita N., Nishiguchi M., Okada Y. Attenuated strains of tobacco mosaic virus. Reduced synthesis of a viral protein with a cell-to-cell movement function. J Mol Biol. 1987 Apr 20;194(4):699–704. doi: 10.1016/0022-2836(87)90247-6. [DOI] [PubMed] [Google Scholar]
- Weiland J. J., Edwards M. C. Evidence that the alpha a gene of barley stripe mosaic virus encodes determinants of pathogenicity to oat (Avena sativa). Virology. 1994 May 15;201(1):116–126. doi: 10.1006/viro.1994.1271. [DOI] [PubMed] [Google Scholar]
- Wong S. W., Wahl A. F., Yuan P. M., Arai N., Pearson B. E., Arai K., Korn D., Hunkapiller M. W., Wang T. S. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 1988 Jan;7(1):37–47. doi: 10.1002/j.1460-2075.1988.tb02781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]