Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Sep;70(9):6446–6449. doi: 10.1128/jvi.70.9.6446-6449.1996

DNA double-strand break repair functions defend against parvovirus infection.

T J Tauer 1, M H Schneiderman 1, J K Vishwanatha 1, S L Rhode 1
PMCID: PMC190677  PMID: 8709279

Abstract

We measured parvovirus replication and sensitivity to X-ray damage in nine CHO cell lines representing a variety of DNA repair deficiencies. We found that parvovirus replication efficiency increases with radiosensitivity. Parvovirus replication is disrupted at an early stage of infection in DNA repair-proficient cells, before conversion of the single-stranded viral DNA genome into the double-stranded replicative form. Thus, status of the DNA repair machinery inversely correlates with parvovirus replication and is proportional to the host's ability to repair X-ray-induced damage.

Full Text

The Full Text of this article is available as a PDF (165.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astell C. R. Replication of minute virus of mice in Chinese hamster ovary fibroblasts. J Gen Virol. 1977 Jun;35(3):587–591. doi: 10.1099/0022-1317-35-3-587. [DOI] [PubMed] [Google Scholar]
  2. Cao Q. P., Pitt S., Leszyk J., Baril E. F. DNA-dependent ATPase from HeLa cells is related to human Ku autoantigen. Biochemistry. 1994 Jul 19;33(28):8548–8557. doi: 10.1021/bi00194a021. [DOI] [PubMed] [Google Scholar]
  3. Cotmore S. F., Tattersall P. The autonomously replicating parvoviruses of vertebrates. Adv Virus Res. 1987;33:91–174. doi: 10.1016/s0065-3527(08)60317-6. [DOI] [PubMed] [Google Scholar]
  4. Diffoot N., Chen K. C., Bates R. C., Lederman M. The complete nucleotide sequence of parvovirus LuIII and localization of a unique sequence possibly responsible for its encapsidation pattern. Virology. 1993 Jan;192(1):339–345. doi: 10.1006/viro.1993.1040. [DOI] [PubMed] [Google Scholar]
  5. Doll R., Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981 Jun;66(6):1191–1308. [PubMed] [Google Scholar]
  6. Dvir A., Peterson S. R., Knuth M. W., Lu H., Dynan W. S. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11920–11924. doi: 10.1073/pnas.89.24.11920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Errami A., Smider V., Rathmell W. K., He D. M., Hendrickson E. A., Zdzienicka M. Z., Chu G. Ku86 defines the genetic defect and restores X-ray resistance and V(D)J recombination to complementation group 5 hamster cell mutants. Mol Cell Biol. 1996 Apr;16(4):1519–1526. doi: 10.1128/mcb.16.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferrari F. K., Samulski T., Shenk T., Samulski R. J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol. 1996 May;70(5):3227–3234. doi: 10.1128/jvi.70.5.3227-3234.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher K. J., Gao G. P., Weitzman M. D., DeMatteo R., Burda J. F., Wilson J. M. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol. 1996 Jan;70(1):520–532. doi: 10.1128/jvi.70.1.520-532.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Flotte T. R., Afione S. A., Solow R., Drumm M. L., Markakis D., Guggino W. B., Zeitlin P. L., Carter B. J. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biol Chem. 1993 Feb 15;268(5):3781–3790. [PubMed] [Google Scholar]
  11. Getts R. C., Stamato T. D. Absence of a Ku-like DNA end binding activity in the xrs double-strand DNA repair-deficient mutant. J Biol Chem. 1994 Jun 10;269(23):15981–15984. [PubMed] [Google Scholar]
  12. Gottlieb T. M., Jackson S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell. 1993 Jan 15;72(1):131–142. doi: 10.1016/0092-8674(93)90057-w. [DOI] [PubMed] [Google Scholar]
  13. Johnston P. J., Bryant P. E. A component of DNA double-strand break repair is dependent on the spatial orientation of the lesions within the higher-order structures of chromatin. Int J Radiat Biol. 1994 Nov;66(5):531–536. doi: 10.1080/09553009414551571. [DOI] [PubMed] [Google Scholar]
  14. Kaplitt M. G., Leone P., Samulski R. J., Xiao X., Pfaff D. W., O'Malley K. L., During M. J. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet. 1994 Oct;8(2):148–154. doi: 10.1038/ng1094-148. [DOI] [PubMed] [Google Scholar]
  15. LaFace D., Hermonat P., Wakeland E., Peck A. Gene transfer into hematopoietic progenitor cells mediated by an adeno-associated virus vector. Virology. 1988 Feb;162(2):483–486. doi: 10.1016/0042-6822(88)90491-6. [DOI] [PubMed] [Google Scholar]
  16. Ledinko N. Plaque assay of the effects of cytosine arabinoside and 5-iodo-2'-deoxyuridine on the synthesis of H-I virus particles. Nature. 1967 Jun 24;214(5095):1346–1347. doi: 10.1038/2141346a0. [DOI] [PubMed] [Google Scholar]
  17. Roth D. B., Menetski J. P., Nakajima P. B., Bosma M. J., Gellert M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell. 1992 Sep 18;70(6):983–991. doi: 10.1016/0092-8674(92)90248-b. [DOI] [PubMed] [Google Scholar]
  18. Schneiderman M. H., Hofer K. G., Schneiderman G. S. An in vitro 125IUdR-release assay for measuring the kinetics of cell death. Int J Radiat Biol. 1991 Feb;59(2):397–408. doi: 10.1080/09553009114550361. [DOI] [PubMed] [Google Scholar]
  19. Smider V., Rathmell W. K., Lieber M. R., Chu G. Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA. Science. 1994 Oct 14;266(5183):288–291. doi: 10.1126/science.7939667. [DOI] [PubMed] [Google Scholar]
  20. Taccioli G. E., Gottlieb T. M., Blunt T., Priestley A., Demengeot J., Mizuta R., Lehmann A. R., Alt F. W., Jackson S. P., Jeggo P. A. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science. 1994 Sep 2;265(5177):1442–1445. doi: 10.1126/science.8073286. [DOI] [PubMed] [Google Scholar]
  21. Tuteja N., Tuteja R., Ochem A., Taneja P., Huang N. W., Simoncsits A., Susic S., Rahman K., Marusic L., Chen J. Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J. 1994 Oct 17;13(20):4991–5001. doi: 10.1002/j.1460-2075.1994.tb06826.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vishwanatha J. K., Tauer T. J., Rhode S. L., 3rd Characterization of the HeLa cell single-stranded DNA-dependent ATPase/DNA helicase II. Mol Cell Biochem. 1995 May 24;146(2):121–126. doi: 10.1007/BF00944604. [DOI] [PubMed] [Google Scholar]
  23. Zdzienicka M. Z. Mammalian mutants defective in the response to ionizing radiation-induced DNA damage. Mutat Res. 1995 May;336(3):203–213. doi: 10.1016/0921-8777(95)00003-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES