Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):6589–6597. doi: 10.1128/jvi.70.10.6589-6597.1996

Attachment and entry of recombinant Norwalk virus capsids to cultured human and animal cell lines.

L J White 1, J M Ball 1, M E Hardy 1, T N Tanaka 1, N Kitamoto 1, M K Estes 1
PMCID: PMC190699  PMID: 8794293

Abstract

Norwalk virus (NV) is the prototype strain of a group of noncultivable human caliciviruses responsible for epidemic outbreaks of acute gastroenteritis. While these viruses do not grow in tissue culture cells or animal models, expression of the capsid protein in insect cells results in the self-assembly of recombinant Norwalk virus-like particles (rNV VLPs) that are morphologically and antigenically similar to native NV. We have used these rNV VLPs to examine virus-cell interactions. Binding and internalization of VLPs to cultured human and animal cell lines were studied in an attempt to identify potentially susceptible cell lines for virus propagation in vitro and to determine if early events in the replication cycle were responsible for the narrow host range and restriction of virus growth in cell culture. Radiolabeled VLPs specifically bound to a saturable number of binding molecules on the cell surface of 13 cell lines from different origins, including human intestine (differentiated and undifferentiated Caco-2) and insect (Spodoptera frugiperda 9) ovary. Differentiated Caco-2 cells bound significantly more rNV VLPs than the other cell lines. Variations in the amount of bound VLPs among the different cell lines did not correlate with the tissue or species of origin. VLP binding was specific, as determined by competition experiments with unlabeled rNV VLPs; however, only 1.4 to 6.8% of the specifically prebound radiolabeled VLPs became internalized into cells. Blocking experiments using polygonal and monoclonal anti-rNV sera and specific antipeptide sera were performed to map the domains on rNV VLPs involved in binding to cells. One monoclonal antibody (NV8812) blocked binding of rNV VLPs to human and animal cell lines. The binding site of monoclonal antibody NV8812 was localized to the C-terminal 300 to 384 residues of the capsid protein by immunoprecipitation with truncated and cleaved forms of the capsid protein. These data suggest that the C-terminal region of the capsid protein is involved in specific binding of rNV VLPs to cells.

Full Text

The Full Text of this article is available as a PDF (274.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bass D. M., Baylor M. R., Chen C., Mackow E. M., Bremont M., Greenberg H. B. Liposome-mediated transfection of intact viral particles reveals that plasma membrane penetration determines permissivity of tissue culture cells to rotavirus. J Clin Invest. 1992 Dec;90(6):2313–2320. doi: 10.1172/JCI116119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blacklow N. R., Greenberg H. B. Viral gastroenteritis. N Engl J Med. 1991 Jul 25;325(4):252–264. doi: 10.1056/NEJM199107253250406. [DOI] [PubMed] [Google Scholar]
  3. Collins A. R. HLA class I antigen serves as a receptor for human coronavirus OC43. Immunol Invest. 1993 Mar;22(2):95–103. doi: 10.3109/08820139309063393. [DOI] [PubMed] [Google Scholar]
  4. Colonno R. J., Condra J. H., Mizutani S., Callahan P. L., Davies M. E., Murcko M. A. Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5449–5453. doi: 10.1073/pnas.85.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crawford S. E., Labbé M., Cohen J., Burroughs M. H., Zhou Y. J., Estes M. K. Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol. 1994 Sep;68(9):5945–5952. doi: 10.1128/jvi.68.9.5945-5952.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flynn W. T., Saif L. J. Serial propagation of porcine enteric calicivirus-like virus in primary porcine kidney cell cultures. J Clin Microbiol. 1988 Feb;26(2):206–212. doi: 10.1128/jcm.26.2.206-212.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D. J., Brown F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol. 1989 Mar;70(Pt 3):625–637. doi: 10.1099/0022-1317-70-3-625. [DOI] [PubMed] [Google Scholar]
  8. Fries E., Helenius A. Binding of Semliki Forest virus and its spike glycoproteins to cells. Eur J Biochem. 1979 Jun;97(1):213–220. doi: 10.1111/j.1432-1033.1979.tb13105.x. [DOI] [PubMed] [Google Scholar]
  9. Graham D. Y., Jiang X., Tanaka T., Opekun A. R., Madore H. P., Estes M. K. Norwalk virus infection of volunteers: new insights based on improved assays. J Infect Dis. 1994 Jul;170(1):34–43. doi: 10.1093/infdis/170.1.34. [DOI] [PubMed] [Google Scholar]
  10. Green K. Y., Lew J. F., Jiang X., Kapikian A. Z., Estes M. K. Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. J Clin Microbiol. 1993 Aug;31(8):2185–2191. doi: 10.1128/jcm.31.8.2185-2191.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenberg H. B., Valdesuso J. R., Kalica A. R., Wyatt R. G., McAuliffe V. J., Kapikian A. Z., Chanock R. M. Proteins of Norwalk virus. J Virol. 1981 Mar;37(3):994–999. doi: 10.1128/jvi.37.3.994-999.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989 Mar 10;56(5):839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  13. Hardy M. E., Tanaka T. N., Kitamoto N., White L. J., Ball J. M., Jiang X., Estes M. K. Antigenic mapping of the recombinant Norwalk virus capsid protein using monoclonal antibodies. Virology. 1996 Mar 1;217(1):252–261. doi: 10.1006/viro.1996.0112. [DOI] [PubMed] [Google Scholar]
  14. Hardy M. E., White L. J., Ball J. M., Estes M. K. Specific proteolytic cleavage of recombinant Norwalk virus capsid protein. J Virol. 1995 Mar;69(3):1693–1698. doi: 10.1128/jvi.69.3.1693-1698.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jiang X., Matson D. O., Ruiz-Palacios G. M., Hu J., Treanor J., Pickering L. K. Expression, self-assembly, and antigenicity of a snow mountain agent-like calicivirus capsid protein. J Clin Microbiol. 1995 Jun;33(6):1452–1455. doi: 10.1128/jcm.33.6.1452-1455.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jiang X., Wang M., Graham D. Y., Estes M. K. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol. 1992 Nov;66(11):6527–6532. doi: 10.1128/jvi.66.11.6527-6532.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jiang X., Wang M., Wang K., Estes M. K. Sequence and genomic organization of Norwalk virus. Virology. 1993 Jul;195(1):51–61. doi: 10.1006/viro.1993.1345. [DOI] [PubMed] [Google Scholar]
  18. Johnson P. C., Mathewson J. J., DuPont H. L., Greenberg H. B. Multiple-challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J Infect Dis. 1990 Jan;161(1):18–21. doi: 10.1093/infdis/161.1.18. [DOI] [PubMed] [Google Scholar]
  19. Kapikian A. Z., Wyatt R. G., Dolin R., Thornhill T. S., Kalica A. R., Chanock R. M. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol. 1972 Nov;10(5):1075–1081. doi: 10.1128/jvi.10.5.1075-1081.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kreutz L. C., Seal B. S., Mengeling W. L. Early interaction of feline calicivirus with cells in culture. Arch Virol. 1994;136(1-2):19–34. doi: 10.1007/BF01538814. [DOI] [PubMed] [Google Scholar]
  21. Kreutz L. C., Seal B. S. The pathway of feline calicivirus entry. Virus Res. 1995 Jan;35(1):63–70. doi: 10.1016/0168-1702(94)00077-p. [DOI] [PubMed] [Google Scholar]
  22. Lamarre D., Ashkenazi A., Fleury S., Smith D. H., Sekaly R. P., Capon D. J. The MHC-binding and gp120-binding functions of CD4 are separable. Science. 1989 Aug 18;245(4919):743–746. doi: 10.1126/science.2549633. [DOI] [PubMed] [Google Scholar]
  23. Lambden P. R., Caul E. O., Ashley C. R., Clarke I. N. Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science. 1993 Jan 22;259(5094):516–519. doi: 10.1126/science.8380940. [DOI] [PubMed] [Google Scholar]
  24. Li Y., van Drunen Littel-van den Hurk S., Babiuk L. A., Liang X. Characterization of cell-binding properties of bovine herpesvirus 1 glycoproteins B, C, and D: identification of a dual cell-binding function of gB. J Virol. 1995 Aug;69(8):4758–4768. doi: 10.1128/jvi.69.8.4758-4768.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marsh M., Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matsui S. M., Kim J. P., Greenberg H. B., Su W., Sun Q., Johnson P. C., DuPont H. L., Oshiro L. S., Reyes G. R. The isolation and characterization of a Norwalk virus-specific cDNA. J Clin Invest. 1991 Apr;87(4):1456–1461. doi: 10.1172/JCI115152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McKinney M. M., Parkinson A. A simple, non-chromatographic procedure to purify immunoglobulins from serum and ascites fluid. J Immunol Methods. 1987 Feb 11;96(2):271–278. doi: 10.1016/0022-1759(87)90324-3. [DOI] [PubMed] [Google Scholar]
  28. Müller M., Gissmann L., Cristiano R. J., Sun X. Y., Frazer I. H., Jenson A. B., Alonso A., Zentgraf H., Zhou J. Papillomavirus capsid binding and uptake by cells from different tissues and species. J Virol. 1995 Feb;69(2):948–954. doi: 10.1128/jvi.69.2.948-954.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Parrino T. A., Schreiber D. S., Trier J. S., Kapikian A. Z., Blacklow N. R. Clinical immunity in acute gastroenteritis caused by Norwalk agent. N Engl J Med. 1977 Jul 14;297(2):86–89. doi: 10.1056/NEJM197707142970204. [DOI] [PubMed] [Google Scholar]
  30. Parwani A. V., Flynn W. T., Gadfield K. L., Saif L. J. Serial propagation of porcine enteric calicivirus in a continuous cell line. Effect of medium supplementation with intestinal contents or enzymes. Arch Virol. 1991;120(1-2):115–122. doi: 10.1007/BF01310954. [DOI] [PubMed] [Google Scholar]
  31. Pintó R. M., Diez J. M., Bosch A. Use of the colonic carcinoma cell line CaCo-2 for in vivo amplification and detection of enteric viruses. J Med Virol. 1994 Nov;44(3):310–315. doi: 10.1002/jmv.1890440317. [DOI] [PubMed] [Google Scholar]
  32. Prasad B. V., Matson D. O., Smith A. W. Three-dimensional structure of calicivirus. J Mol Biol. 1994 Jul 15;240(3):256–264. doi: 10.1006/jmbi.1994.1439. [DOI] [PubMed] [Google Scholar]
  33. Prasad B. V., Rothnagel R., Jiang X., Estes M. K. Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol. 1994 Aug;68(8):5117–5125. doi: 10.1128/jvi.68.8.5117-5125.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roden R. B., Kirnbauer R., Jenson A. B., Lowy D. R., Schiller J. T. Interaction of papillomaviruses with the cell surface. J Virol. 1994 Nov;68(11):7260–7266. doi: 10.1128/jvi.68.11.7260-7266.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H. J., Johnson J. E., Kamer G., Luo M., Mosser A. G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985 Sep 12;317(6033):145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
  36. Rossmann M. G. The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J Biol Chem. 1989 Sep 5;264(25):14587–14590. [PubMed] [Google Scholar]
  37. Shaw R. D., Vo P. T., Offit P. A., Coulson B. S., Greenberg H. B. Antigenic mapping of the surface proteins of rhesus rotavirus. Virology. 1986 Dec;155(2):434–451. doi: 10.1016/0042-6822(86)90205-9. [DOI] [PubMed] [Google Scholar]
  38. Superti F., Tinari A., Baldassarri L., Donelli G. HT-29 cells: a new substrate for rotavirus growth. Arch Virol. 1991;116(1-4):159–173. doi: 10.1007/BF01319239. [DOI] [PubMed] [Google Scholar]
  39. Taichman L. B., Breitburd F., Croissant O., Orth G. The search for a culture system for papillomavirus. J Invest Dermatol. 1984 Jul;83(1 Suppl):2s–6s. doi: 10.1111/1523-1747.ep12281108. [DOI] [PubMed] [Google Scholar]
  40. Takiff H. E., Straus S. E., Garon C. F. Propagation and in vitro studies of previously non-cultivable enteral adenoviruses in 293 cells. Lancet. 1981 Oct 17;2(8251):832–834. doi: 10.1016/s0140-6736(81)91104-1. [DOI] [PubMed] [Google Scholar]
  41. Taniguchi K., Urasawa S., Urasawa T. Further studies of 35--40 nm virus-like particles associated with outbreaks of acute gastroenteritis. J Med Microbiol. 1981 Feb;14(1):107–118. doi: 10.1099/00222615-14-1-107. [DOI] [PubMed] [Google Scholar]
  42. Wickham T. J., Granados R. R., Wood H. A., Hammer D. A., Shuler M. L. General analysis of receptor-mediated viral attachment to cell surfaces. Biophys J. 1990 Dec;58(6):1501–1516. doi: 10.1016/S0006-3495(90)82495-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993 Apr 23;73(2):309–319. doi: 10.1016/0092-8674(93)90231-e. [DOI] [PubMed] [Google Scholar]
  44. Wirblich C., Meyers G., Ohlinger V. F., Capucci L., Eskens U., Haas B., Thiel H. J. European brown hare syndrome virus: relationship to rabbit hemorrhagic disease virus and other caliciviruses. J Virol. 1994 Aug;68(8):5164–5173. doi: 10.1128/jvi.68.8.5164-5173.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wyatt R. G., Greenberg H. B., Dalgard D. W., Allen W. P., Sly D. L., Thornhill T. S., Chanock R. M., Kapikian A. Z. Experimental infection of chimpanzees with the Norwalk agent of epidemic viral gastroenteritis. J Med Virol. 1978;2(2):89–96. doi: 10.1002/jmv.1890020203. [DOI] [PubMed] [Google Scholar]
  46. Xi J. N., Graham D. Y., Wang K. N., Estes M. K. Norwalk virus genome cloning and characterization. Science. 1990 Dec 14;250(4987):1580–1583. doi: 10.1126/science.2177224. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES