Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):6682–6693. doi: 10.1128/jvi.70.10.6682-6693.1996

Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (Puma concolor).

M A Carpenter 1, E W Brown 1, M Culver 1, W E Johnson 1, J Pecon-Slattery 1, D Brousset 1, S J O'Brien 1
PMCID: PMC190710  PMID: 8794304

Abstract

Feline immunodeficiency virus (FIV) is a lentivirus which causes an AIDS-like disease in domestic cats (Felis catus). A number of other felid species, including the puma (Puma concolor), carry a virus closely related to domestic cat FIV. Serological testing revealed the presence of antibodies to FIV in 22% of 434 samples from throughout the geographic range of the puma. FIV-Pco pol gene sequences isolated from pumas revealed extensive sequence diversity, greater than has been documented in the domestic cat. The puma sequences formed two highly divergent groups, analogous to the clades which have been defined for domestic cat and lion (Panthera leo) FIV. The puma clade A was made up of samples from Florida and California, whereas clade B consisted of samples from other parts of North America, Central America, and Brazil. The difference between these two groups was as great as that reported among three lion FIV clades. Within puma clades, sequence variation is large, comparable to between-clade differences seen for domestic cat clades, allowing recognition of 15 phylogenetic lineages (subclades) among puma FIV-Pco. Large sequence divergence among isolates, nearly complete species monophyly, and widespread geographic distribution suggest that FIV-Pco has evolved within the puma species for a long period. The sequence data provided evidence for vertical transmission of FIV-Pco from mothers to their kittens, for coinfection of individuals by two different viral strains, and for cross-species transmission of FIV from a domestic cat to a puma. These factors may all be important for understanding the epidemiology and natural history of FIV in the puma.

Full Text

The Full Text of this article is available as a PDF (264.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown E. W., Yuhki N., Packer C., O'Brien S. J. A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. J Virol. 1994 Sep;68(9):5953–5968. doi: 10.1128/jvi.68.9.5953-5968.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carpenter M. A., O'Brien S. J. Coadaptation and immunodeficiency virus: lessons from the Felidae. Curr Opin Genet Dev. 1995 Dec;5(6):739–745. doi: 10.1016/0959-437x(95)80006-q. [DOI] [PubMed] [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dua N., Reubel G., Moore P. F., Higgins J., Pedersen N. C. An experimental study of primary feline immunodeficiency virus infection in cats and a historical comparison to acute simian and human immunodeficiency virus diseases. Vet Immunol Immunopathol. 1994 Nov;43(4):337–355. doi: 10.1016/0165-2427(94)90156-2. [DOI] [PubMed] [Google Scholar]
  5. English R. V., Nelson P., Johnson C. M., Nasisse M., Tompkins W. A., Tompkins M. B. Development of clinical disease in cats experimentally infected with feline immunodeficiency virus. J Infect Dis. 1994 Sep;170(3):543–552. doi: 10.1093/infdis/170.3.543. [DOI] [PubMed] [Google Scholar]
  6. Gao F., Yue L., Robertson D. L., Hill S. C., Hui H., Biggar R. J., Neequaye A. E., Whelan T. M., Ho D. D., Shaw G. M. Genetic diversity of human immunodeficiency virus type 2: evidence for distinct sequence subtypes with differences in virus biology. J Virol. 1994 Nov;68(11):7433–7447. doi: 10.1128/jvi.68.11.7433-7447.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greene W. K., Meers J., Chadwick B., Carnegie P. R., Robinson W. F. Nucleotide sequences of Australian isolates of the feline immunodeficiency virus: comparison with other feline lentiviruses. Arch Virol. 1993;132(3-4):369–379. doi: 10.1007/BF01309546. [DOI] [PubMed] [Google Scholar]
  8. Kakinuma S., Motokawa K., Hohdatsu T., Yamamoto J. K., Koyama H., Hashimoto H. Nucleotide sequence of feline immunodeficiency virus: classification of Japanese isolates into two subtypes which are distinct from non-Japanese subtypes. J Virol. 1995 Jun;69(6):3639–3646. doi: 10.1128/jvi.69.6.3639-3646.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  10. Kyaw-Tanner M. T., Greene W. K., Park H. S., Robinson W. F. The induction of in vivo superinfection and recombination using feline immunodeficiency virus as the model. Arch Virol. 1994;138(3-4):261–271. doi: 10.1007/BF01379130. [DOI] [PubMed] [Google Scholar]
  11. Langley R. J., Hirsch V. M., O'Brien S. J., Adger-Johnson D., Goeken R. M., Olmsted R. A. Nucleotide sequence analysis of puma lentivirus (PLV-14): genomic organization and relationship to other lentiviruses. Virology. 1994 Aug 1;202(2):853–864. doi: 10.1006/viro.1994.1407. [DOI] [PubMed] [Google Scholar]
  12. Lutz H., Isenbügel E., Lehmann R., Sabapara R. H., Wolfensberger C. Retrovirus infections in non-domestic felids: serological studies and attempts to isolate a lentivirus. Vet Immunol Immunopathol. 1992 Dec;35(1-2):215–224. doi: 10.1016/0165-2427(92)90133-b. [DOI] [PubMed] [Google Scholar]
  13. Maki N., Miyazawa T., Fukasawa M., Hasegawa A., Hayami M., Miki K., Mikami T. Molecular characterization and heterogeneity of feline immunodeficiency virus isolates. Arch Virol. 1992;123(1-2):29–45. doi: 10.1007/BF01317136. [DOI] [PubMed] [Google Scholar]
  14. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  15. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  16. O'Brien S. J. Genomic prospecting. Nat Med. 1995 Aug;1(8):742–744. doi: 10.1038/nm0895-742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Okada S., Pu R., Young E., Stoffs W. V., Yamamoto J. K. Superinfection of cats with feline immunodeficiency virus subtypes A and B. AIDS Res Hum Retroviruses. 1994 Dec;10(12):1739–1746. doi: 10.1089/aid.1994.10.1739. [DOI] [PubMed] [Google Scholar]
  18. Olmsted R. A., Hirsch V. M., Purcell R. H., Johnson P. R. Nucleotide sequence analysis of feline immunodeficiency virus: genome organization and relationship to other lentiviruses. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8088–8092. doi: 10.1073/pnas.86.20.8088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olmsted R. A., Langley R., Roelke M. E., Goeken R. M., Adger-Johnson D., Goff J. P., Albert J. P., Packer C., Laurenson M. K., Caro T. M. Worldwide prevalence of lentivirus infection in wild feline species: epidemiologic and phylogenetic aspects. J Virol. 1992 Oct;66(10):6008–6018. doi: 10.1128/jvi.66.10.6008-6018.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science. 1987 Feb 13;235(4790):790–793. doi: 10.1126/science.3643650. [DOI] [PubMed] [Google Scholar]
  21. Phillips T. R., Talbott R. L., Lamont C., Muir S., Lovelace K., Elder J. H. Comparison of two host cell range variants of feline immunodeficiency virus. J Virol. 1990 Oct;64(10):4605–4613. doi: 10.1128/jvi.64.10.4605-4613.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  23. Reubel G. H., Dean G. A., George J. W., Barlough J. E., Pedersen N. C. Effects of incidental infections and immune activation on disease progression in experimentally feline immunodeficiency virus-infected cats. J Acquir Immune Defic Syndr. 1994 Oct;7(10):1003–1015. [PubMed] [Google Scholar]
  24. Robertson D. L., Hahn B. H., Sharp P. M. Recombination in AIDS viruses. J Mol Evol. 1995 Mar;40(3):249–259. doi: 10.1007/BF00163230. [DOI] [PubMed] [Google Scholar]
  25. Roelke M. E., Martenson J. S., O'Brien S. J. The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol. 1993 Jun 1;3(6):340–350. doi: 10.1016/0960-9822(93)90197-v. [DOI] [PubMed] [Google Scholar]
  26. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  27. Sellon R. K., Jordan H. L., Kennedy-Stoskopf S., Tompkins M. B., Tompkins W. A. Feline immunodeficiency virus can be experimentally transmitted via milk during acute maternal infection. J Virol. 1994 May;68(5):3380–3385. doi: 10.1128/jvi.68.5.3380-3385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sodora D. L., Shpaer E. G., Kitchell B. E., Dow S. W., Hoover E. A., Mullins J. I. Identification of three feline immunodeficiency virus (FIV) env gene subtypes and comparison of the FIV and human immunodeficiency virus type 1 evolutionary patterns. J Virol. 1994 Apr;68(4):2230–2238. doi: 10.1128/jvi.68.4.2230-2238.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spencer J. A., Van Dijk A. A., Horzinek M. C., Egberink H. F., Bengis R. G., Keet D. F., Morikawa S., Bishop D. H. Incidence of feline immunodeficiency virus reactive antibodies in free-ranging lions of the Kruger National Park and the Etosha National Park in southern Africa detected by recombinant FIV p24 antigen. Onderstepoort J Vet Res. 1992 Dec;59(4):315–322. [PubMed] [Google Scholar]
  30. Talbott R. L., Sparger E. E., Lovelace K. M., Fitch W. M., Pedersen N. C., Luciw P. A., Elder J. H. Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5743–5747. doi: 10.1073/pnas.86.15.5743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ueland K., Nesse L. L. No evidence of vertical transmission of naturally acquired feline immunodeficiency virus infection. Vet Immunol Immunopathol. 1992 Sep;33(4):301–308. doi: 10.1016/0165-2427(92)90002-8. [DOI] [PubMed] [Google Scholar]
  32. Yamamoto J. K., Hansen H., Ho E. W., Morishita T. Y., Okuda T., Sawa T. R., Nakamura R. M., Pedersen N. C. Epidemiologic and clinical aspects of feline immunodeficiency virus infection in cats from the continental United States and Canada and possible mode of transmission. J Am Vet Med Assoc. 1989 Jan 15;194(2):213–220. [PubMed] [Google Scholar]
  33. Zhu T., Wang N., Carr A., Wolinsky S., Ho D. D. Evidence for coinfection by multiple strains of human immunodeficiency virus type 1 subtype B in an acute seroconvertor. J Virol. 1995 Feb;69(2):1324–1327. doi: 10.1128/jvi.69.2.1324-1327.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES