Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):6716–6722. doi: 10.1128/jvi.70.10.6716-6722.1996

Influenza virus polymerase basic protein 1 interacts with influenza virus polymerase basic protein 2 at multiple sites.

S K Biswas 1, D P Nayak 1
PMCID: PMC190714  PMID: 8794308

Abstract

Three polymerase proteins of influenza type A virus interact with each other to form the active polymerase complex. Polymerase basic protein 1 (PB1) can interact with PB2 in the presence or absence of polymerase acidic protein. In this study, we investigated the domains of PB1 involved in complex formation with PB2 in vivo, using coexpression and coimmunoprecipitation of the PB1-PB2 complex with monospecific antibodies. Results show that PB1 possesses at least two regions which can interact independently and form stable complexes with PB2. Both of these regions are located at the NH2 terminus of PB1; the COOH-terminal half of PB1 is not involved in interacting with PB2. Deletion analysis further demonstrated that the interacting regions of PB1 encompass amino acids (aa) 48 to 145 and aa 251 to 321. Linker insertions throughout the PB1 sequences did not affect complex formation with PB2. Deletion and linker-insertion mutants of PB1 were tested for polymerase activity in vivo. For this analysis, we developed a simplified assay for viral polymerase activity that uses a reporter chloramphenicol acetyltransferase gene containing the 5' and 3' ends of influenza viral promoter and nontranslating regions (minus sense) of the NS gene joined to a hepatitis delta virus ribozyme at its 3' end. This assay demonstrated that all deletion mutants of PB1 exhibited either background or greatly reduced polymerase activity irrespective of the ability to interact with PB2 and that all linker-insertion mutants except one at the extreme COOH end (L-746) of PB1 were also negative for viral polymerase activity. These results show that compared with complex formation of PB1 with PB2, the polymerase activity of PB1 was extremely sensitive to structural perturbation.

Full Text

The Full Text of this article is available as a PDF (367.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akkina R. K., Chambers T. M., Londo D. R., Nayak D. P. Intracellular localization of the viral polymerase proteins in cells infected with influenza virus and cells expressing PB1 protein from cloned cDNA. J Virol. 1987 Jul;61(7):2217–2224. doi: 10.1128/jvi.61.7.2217-2224.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akkina R. K., Richardson J. C., Aguilera M. C., Yang C. M. Heterogeneous forms of polymerase proteins exist in influenza A virus-infected cells. Virus Res. 1991 Mar;19(1):17–30. doi: 10.1016/0168-1702(91)90091-9. [DOI] [PubMed] [Google Scholar]
  3. Ball L. A. Cellular expression of a functional nodavirus RNA replicon from vaccinia virus vectors. J Virol. 1992 Apr;66(4):2335–2345. doi: 10.1128/jvi.66.4.2335-2345.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biswas S. K., Nayak D. P. Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol. 1994 Mar;68(3):1819–1826. doi: 10.1128/jvi.68.3.1819-1826.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cianci C., Tiley L., Krystal M. Differential activation of the influenza virus polymerase via template RNA binding. J Virol. 1995 Jul;69(7):3995–3999. doi: 10.1128/jvi.69.7.3995-3999.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Detjen B. M., St Angelo C., Katze M. G., Krug R. M. The three influenza virus polymerase (P) proteins not associated with viral nucleocapsids in the infected cell are in the form of a complex. J Virol. 1987 Jan;61(1):16–22. doi: 10.1128/jvi.61.1.16-22.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fodor E., Pritlove D. C., Brownlee G. G. The influenza virus panhandle is involved in the initiation of transcription. J Virol. 1994 Jun;68(6):4092–4096. doi: 10.1128/jvi.68.6.4092-4096.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fodor E., Seong B. L., Brownlee G. G. Photochemical cross-linking of influenza A polymerase to its virion RNA promoter defines a polymerase binding site at residues 9 to 12 of the promoter. J Gen Virol. 1993 Jul;74(Pt 7):1327–1333. doi: 10.1099/0022-1317-74-7-1327. [DOI] [PubMed] [Google Scholar]
  9. Fuerst T. R., Earl P. L., Moss B. Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol Cell Biol. 1987 Jul;7(7):2538–2544. doi: 10.1128/mcb.7.7.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagen M., Chung T. D., Butcher J. A., Krystal M. Recombinant influenza virus polymerase: requirement of both 5' and 3' viral ends for endonuclease activity. J Virol. 1994 Mar;68(3):1509–1515. doi: 10.1128/jvi.68.3.1509-1515.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hizi A., Barber A., Hughes S. H. Effects of small insertions on the RNA-dependent DNA polymerase activity of HIV-1 reverse transcriptase. Virology. 1989 May;170(1):326–329. doi: 10.1016/0042-6822(89)90389-9. [DOI] [PubMed] [Google Scholar]
  12. Horikami S. M., Curran J., Kolakofsky D., Moyer S. A. Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol. 1992 Aug;66(8):4901–4908. doi: 10.1128/jvi.66.8.4901-4908.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hsu M. T., Parvin J. D., Gupta S., Krystal M., Palese P. Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8140–8144. doi: 10.1073/pnas.84.22.8140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang T. S., Palese P., Krystal M. Determination of influenza virus proteins required for genome replication. J Virol. 1990 Nov;64(11):5669–5673. doi: 10.1128/jvi.64.11.5669-5673.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kimura N., Nishida M., Nagata K., Ishihama A., Oda K., Nakada S. Transcription of a recombinant influenza virus RNA in cells that can express the influenza virus RNA polymerase and nucleoprotein genes. J Gen Virol. 1992 Jun;73(Pt 6):1321–1328. doi: 10.1099/0022-1317-73-6-1321. [DOI] [PubMed] [Google Scholar]
  16. Luytjes W., Krystal M., Enami M., Parvin J. D., Palese P. Amplification, expression, and packaging of foreign gene by influenza virus. Cell. 1989 Dec 22;59(6):1107–1113. doi: 10.1016/0092-8674(89)90766-6. [DOI] [PubMed] [Google Scholar]
  17. Mena I., de la Luna S., Albo C., Martín J., Nieto A., Ortín J., Portela A. Synthesis of biologically active influenza virus core proteins using a vaccinia virus-T7 RNA polymerase expression system. J Gen Virol. 1994 Aug;75(Pt 8):2109–2114. doi: 10.1099/0022-1317-75-8-2109. [DOI] [PubMed] [Google Scholar]
  18. Mukaigawa J., Nayak D. P. Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol. 1991 Jan;65(1):245–253. doi: 10.1128/jvi.65.1.245-253.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakagawa Y., Kimura N., Toyoda T., Mizumoto K., Ishihama A., Oda K., Nakada S. The RNA polymerase PB2 subunit is not required for replication of the influenza virus genome but is involved in capped mRNA synthesis. J Virol. 1995 Feb;69(2):728–733. doi: 10.1128/jvi.69.2.728-733.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nath S. T., Nayak D. P. Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1). Mol Cell Biol. 1990 Aug;10(8):4139–4145. doi: 10.1128/mcb.10.8.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neumann G., Zobel A., Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology. 1994 Jul;202(1):477–479. doi: 10.1006/viro.1994.1365. [DOI] [PubMed] [Google Scholar]
  22. Nieto A., de la Luna S., Bárcena J., Portela A., Valcárcel J., Melero J. A., Ortín J. Nuclear transport of influenza virus polymerase PA protein. Virus Res. 1992 Jun;24(1):65–75. doi: 10.1016/0168-1702(92)90031-4. [DOI] [PubMed] [Google Scholar]
  23. Parks G. D. Mapping of a region of the paramyxovirus L protein required for the formation of a stable complex with the viral phosphoprotein P. J Virol. 1994 Aug;68(8):4862–4872. doi: 10.1128/jvi.68.8.4862-4872.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perales B., de la Luna S., Palacios I., Ortín J. Mutational analysis identifies functional domains in the influenza A virus PB2 polymerase subunit. J Virol. 1996 Mar;70(3):1678–1686. doi: 10.1128/jvi.70.3.1678-1686.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pleschka S., Jaskunas R., Engelhardt O. G., Zürcher T., Palese P., García-Sastre A. A plasmid-based reverse genetics system for influenza A virus. J Virol. 1996 Jun;70(6):4188–4192. doi: 10.1128/jvi.70.6.4188-4192.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Poch O., Sauvaget I., Delarue M., Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989 Dec 1;8(12):3867–3874. doi: 10.1002/j.1460-2075.1989.tb08565.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Prasad V. R., Goff S. P. Linker insertion mutagenesis of the human immunodeficiency virus reverse transcriptase expressed in bacteria: definition of the minimal polymerase domain. Proc Natl Acad Sci U S A. 1989 May;86(9):3104–3108. doi: 10.1073/pnas.86.9.3104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pérez D. R., Donis R. O. A 48-amino-acid region of influenza A virus PB1 protein is sufficient for complex formation with PA. J Virol. 1995 Nov;69(11):6932–6939. doi: 10.1128/jvi.69.11.6932-6939.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanz-Ezquerro J. J., de la Luna S., Ortín J., Nieto A. Individual expression of influenza virus PA protein induces degradation of coexpressed proteins. J Virol. 1995 Apr;69(4):2420–2426. doi: 10.1128/jvi.69.4.2420-2426.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sivasubramanian N., Nayak D. P. Sequence analysis of the polymerase 1 gene and the secondary structure prediction of polymerase 1 protein of human influenza virus A/WSN/33. J Virol. 1982 Oct;44(1):321–329. doi: 10.1128/jvi.44.1.321-329.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. St Angelo C., Smith G. E., Summers M. D., Krug R. M. Two of the three influenza viral polymerase proteins expressed by using baculovirus vectors form a complex in insect cells. J Virol. 1987 Feb;61(2):361–365. doi: 10.1128/jvi.61.2.361-365.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tiley L. S., Hagen M., Matthews J. T., Krystal M. Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5' ends of the viral RNAs. J Virol. 1994 Aug;68(8):5108–5116. doi: 10.1128/jvi.68.8.5108-5116.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamashita M., Krystal M., Palese P. Comparison of the three large polymerase proteins of influenza A, B, and C viruses. Virology. 1989 Aug;171(2):458–466. doi: 10.1016/0042-6822(89)90615-6. [DOI] [PubMed] [Google Scholar]
  34. Zhang H., Air G. M. Expression of functional influenza virus A polymerase proteins and template from cloned cDNAS in recombinant vaccinia virus infected cells. Biochem Biophys Res Commun. 1994 Apr 15;200(1):95–101. doi: 10.1006/bbrc.1994.1419. [DOI] [PubMed] [Google Scholar]
  35. de la Luna S., Martín J., Portela A., Ortín J. Influenza virus naked RNA can be expressed upon transfection into cells co-expressing the three subunits of the polymerase and the nucleoprotein from simian virus 40 recombinant viruses. J Gen Virol. 1993 Mar;74(Pt 3):535–539. doi: 10.1099/0022-1317-74-3-535. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES