Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):6909–6921. doi: 10.1128/jvi.70.10.6909-6921.1996

A vaccinia virus core protein, p39, is membrane associated.

S Cudmore 1, R Blasco 1, R Vincentelli 1, M Esteban 1, B Sodeik 1, G Griffiths 1, J Krijnse Locker 1
PMCID: PMC190740  PMID: 8794334

Abstract

We describe herein the characterization of p39, the product of the A4L gene of vaccinia virus. By immunolabelling of thawed cryosections from infected HeLa cells, we show that this protein is initially located in the central region, or viroplasm, of the viral factories, as well as in the immature virions, with very small amounts of labelling observed on the surrounding membranes. The localization of p39 changes dramatically during the transition of the immature virion to the intracellular mature virus (IMV), coincident with the appearance of the core structure in the center of the IMV, with p39 located between this core and the surrounding membranes. Complementary biochemical data, such as partitioning into the Triton X-114 detergent phase and stripping of the viral membranes with Nonidet P-40 and dithiothreitol, suggest that p39 is associated with the innermost of the two membranes surrounding the core. Sodium carbonate treatment also indicates that p39 is associated with membranes, even at the early stages of viral assembly. However, following in vitro translation of p39 in the presence of microsomal membranes, we failed to detect any association of the independently expressed protein with membranes. We also failed to detect any posttranslational acylation of p39 with myristate or palmitate, suggesting that p39 does not achieve its membrane association through lipid anchors. Therefore, p39 is most likely membrane associated through an interaction with an integral membrane protein(s) present in the innermost of the two membranes surrounding the IMV. These data, together with our recent data showing that p39 colocalizes with the spike-like protrusions on the IMV core (N. Roos, M. Cyrklaff, S. Cudmore, R. Blasco, J. Krijnse-Locker, and G. Griffiths, EMBO J. 15:2343-2355, 1996), suggest that p39 may form part of this spike and that it possibly functions as a matrix-like linker protein between the core and the innermost of the two membranes surrounding the IMV.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  2. CAIRNS J. The initiation of vaccinia infection. Virology. 1960 Jul;11:603–623. doi: 10.1016/0042-6822(60)90103-3. [DOI] [PubMed] [Google Scholar]
  3. Cham B. E., Knowles B. R. A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res. 1976 Mar;17(2):176–181. [PubMed] [Google Scholar]
  4. Child S. J., Hruby D. E. Evidence for multiple species of vaccinia virus-encoded palmitylated proteins. Virology. 1992 Nov;191(1):262–271. doi: 10.1016/0042-6822(92)90188-u. [DOI] [PubMed] [Google Scholar]
  5. DALES S. The uptake and development of vaccinia virus in strain L cells followed with labeled viral deoxyribonucleic acid. J Cell Biol. 1963 Jul;18:51–72. doi: 10.1083/jcb.18.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dales S., Mosbach E. H. Vaccinia as a model for membrane biogenesis. Virology. 1968 Aug;35(4):564–583. doi: 10.1016/0042-6822(68)90286-9. [DOI] [PubMed] [Google Scholar]
  7. Demkowicz W. E., Maa J. S., Esteban M. Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. J Virol. 1992 Jan;66(1):386–398. doi: 10.1128/jvi.66.1.386-398.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doms R. W., Blumenthal R., Moss B. Fusion of intra- and extracellular forms of vaccinia virus with the cell membrane. J Virol. 1990 Oct;64(10):4884–4892. doi: 10.1128/jvi.64.10.4884-4892.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dubochet J., Adrian M., Richter K., Garces J., Wittek R. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy. J Virol. 1994 Mar;68(3):1935–1941. doi: 10.1128/jvi.68.3.1935-1941.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Easterbrook K. B. Controlled degradation of vaccinia virions in vitro: an electron microscopic study. J Ultrastruct Res. 1966 Mar;14(5):484–496. doi: 10.1016/s0022-5320(66)80077-1. [DOI] [PubMed] [Google Scholar]
  11. Ericsson M., Cudmore S., Shuman S., Condit R. C., Griffiths G., Locker J. K. Characterization of ts 16, a temperature-sensitive mutant of vaccinia virus. J Virol. 1995 Nov;69(11):7072–7086. doi: 10.1128/jvi.69.11.7072-7086.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Essani K., Dales S. Biogenesis of vaccinia: evidence for more than 100 polypeptides in the virion. Virology. 1979 Jun;95(2):385–394. doi: 10.1016/0042-6822(79)90493-8. [DOI] [PubMed] [Google Scholar]
  13. Franke C. A., Reynolds P. L., Hruby D. E. Fatty acid acylation of vaccinia virus proteins. J Virol. 1989 Oct;63(10):4285–4291. doi: 10.1128/jvi.63.10.4285-4291.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Franke C. A., Wilson E. M., Hruby D. E. Use of a cell-free system to identify the vaccinia virus L1R gene product as the major late myristylated virion protein M25. J Virol. 1990 Dec;64(12):5988–5996. doi: 10.1128/jvi.64.12.5988-5996.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garon C. F., Moss B. Glycoprotein synthesis in cells infected with vaccinia virus. II. A glycoprotein component of the virion. Virology. 1971 Nov;46(2):233–246. doi: 10.1016/0042-6822(71)90026-2. [DOI] [PubMed] [Google Scholar]
  17. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. The complete DNA sequence of vaccinia virus. Virology. 1990 Nov;179(1):247-66, 517-63. doi: 10.1016/0042-6822(90)90294-2. [DOI] [PubMed] [Google Scholar]
  18. Grimley P. M., Rosenblum E. N., Mims S. J., Moss B. Interruption by Rifampin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J Virol. 1970 Oct;6(4):519–533. doi: 10.1128/jvi.6.4.519-533.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harford C. G., Hamlin A., Rieders E. Electron microscopic autoradiography of DNA synthesis in cells infected with vaccinia virus. Exp Cell Res. 1966 Apr;42(1):50–57. doi: 10.1016/0014-4827(66)90318-1. [DOI] [PubMed] [Google Scholar]
  20. Hart G. W. Glycosylation. Curr Opin Cell Biol. 1992 Dec;4(6):1017–1023. doi: 10.1016/0955-0674(92)90134-x. [DOI] [PubMed] [Google Scholar]
  21. Holowczak J. A. Glycopeptides of vaccinia virus. I. Preliminary characterization and hexosamine content. Virology. 1970 Sep;42(1):87–99. doi: 10.1016/0042-6822(70)90241-2. [DOI] [PubMed] [Google Scholar]
  22. Ichihashi Y., Oie M. Adsorption and penetration of the trypsinized vaccinia virion. Virology. 1980 Feb;101(1):50–60. doi: 10.1016/0042-6822(80)90482-1. [DOI] [PubMed] [Google Scholar]
  23. JOKLIK W. K., BECKER Y. THE REPLICATION AND COATING OF VACCINIA DNA. J Mol Biol. 1964 Dec;10:452–474. doi: 10.1016/s0022-2836(64)80066-8. [DOI] [PubMed] [Google Scholar]
  24. Johnson G. P., Goebel S. J., Paoletti E. An update on the vaccinia virus genome. Virology. 1993 Oct;196(2):381–401. doi: 10.1006/viro.1993.1494. [DOI] [PubMed] [Google Scholar]
  25. Katz E., Moss B. Formation of a vaccinia virus structural polypeptide from a higher molecular weight precursor: inhibition by rifampicin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):677–684. doi: 10.1073/pnas.66.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Katz E., Moss B. Vaccinia virus structural polypeptide derived from a high-molecular-weight precursor: formation and integration into virus particles. J Virol. 1970 Dec;6(6):717–726. doi: 10.1128/jvi.6.6.717-726.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Krijnse-Locker J., Schleich S., Rodriguez D., Goud B., Snijder E. J., Griffiths G. The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J Biol Chem. 1996 Jun 21;271(25):14950–14958. doi: 10.1074/jbc.271.25.14950. [DOI] [PubMed] [Google Scholar]
  28. Kurzchalia T. V., Gorvel J. P., Dupree P., Parton R., Kellner R., Houthaeve T., Gruenberg J., Simons K. Interactions of rab5 with cytosolic proteins. J Biol Chem. 1992 Sep 15;267(26):18419–18423. [PubMed] [Google Scholar]
  29. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Locker J. K., Rose J. K., Horzinek M. C., Rottier P. J. Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem. 1992 Oct 25;267(30):21911–21918. doi: 10.1016/S0021-9258(19)36699-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Maa J. S., Esteban M. Structural and functional studies of a 39,000-Mr immunodominant protein of vaccinia virus. J Virol. 1987 Dec;61(12):3910–3919. doi: 10.1128/jvi.61.12.3910-3919.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maa J. S., Rodriguez J. F., Esteban M. Structural and functional characterization of a cell surface binding protein of vaccinia virus. J Biol Chem. 1990 Jan 25;265(3):1569–1577. [PubMed] [Google Scholar]
  34. Morgan C. The insertion of DNA into vaccinia virus. Science. 1976 Aug 13;193(4253):591–592. doi: 10.1126/science.959819. [DOI] [PubMed] [Google Scholar]
  35. Moss B., Katz E., Rosenblum E. N. Vaccinia virus directed RNA and protein synthesis in the presence of rifampicin. Biochem Biophys Res Commun. 1969 Aug 22;36(5):858–865. doi: 10.1016/0006-291x(69)90688-3. [DOI] [PubMed] [Google Scholar]
  36. Moss B. Regulation of vaccinia virus transcription. Annu Rev Biochem. 1990;59:661–688. doi: 10.1146/annurev.bi.59.070190.003305. [DOI] [PubMed] [Google Scholar]
  37. Moss B., Rosenblum E. N., Garon C. F. Glycoprotein synthesis in cells infected with vaccinia virus. 3. Purification and biosynthesis of the virion glycoprotein. Virology. 1973 Sep;55(1):143–156. doi: 10.1016/s0042-6822(73)81016-5. [DOI] [PubMed] [Google Scholar]
  38. Moss B., Rosenblum E. N. Letter: Protein cleavage and poxvirus morphogenesis: tryptic peptide analysis of core precursors accumulated by blocking assembly with rifampicin. J Mol Biol. 1973 Dec 5;81(2):267–269. doi: 10.1016/0022-2836(73)90195-2. [DOI] [PubMed] [Google Scholar]
  39. Moss B., Salzman N. P. Sequential protein synthesis following vaccinia virus infection. J Virol. 1968 Oct;2(10):1016–1027. doi: 10.1128/jvi.2.10.1016-1027.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nagaya A., Pogo B. G., Dales S. Biogenesis of vaccinia: separation of early stages from maturation by means of rifampicin. Virology. 1970 Apr;40(4):1039–1051. doi: 10.1016/0042-6822(70)90150-9. [DOI] [PubMed] [Google Scholar]
  41. Oie M., Ichihashi Y. Characterization of vaccinia polypeptides. Virology. 1981 Aug;113(1):263–276. doi: 10.1016/0042-6822(81)90153-7. [DOI] [PubMed] [Google Scholar]
  42. Oie M., Ichihashi Y. Modification of vaccinia virus penetration proteins analyzed by monoclonal antibodies. Virology. 1987 Apr;157(2):449–459. doi: 10.1016/0042-6822(87)90287-x. [DOI] [PubMed] [Google Scholar]
  43. Paez E., Dallo S., Esteban M. Virus attenuation and identification of structural proteins of vaccinia virus that are selectively modified during virus persistence. J Virol. 1987 Aug;61(8):2642–2647. doi: 10.1128/jvi.61.8.2642-2647.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roos N., Cyrklaff M., Cudmore S., Blasco R., Krijnse-Locker J., Griffiths G. A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. EMBO J. 1996 May 15;15(10):2343–2355. [PMC free article] [PubMed] [Google Scholar]
  45. Schmelz M., Sodeik B., Ericsson M., Wolffe E. J., Shida H., Hiller G., Griffiths G. Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol. 1994 Jan;68(1):130–147. doi: 10.1128/jvi.68.1.130-147.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Silver M., Dales S. Biogenesis of vaccina: interrelationship between post-translational cleavage, virus assembly, and maturation. Virology. 1982 Mar;117(2):341–356. doi: 10.1016/0042-6822(82)90474-3. [DOI] [PubMed] [Google Scholar]
  47. Snow C. M., Senior A., Gerace L. Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol. 1987 May;104(5):1143–1156. doi: 10.1083/jcb.104.5.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sodeik B., Cudmore S., Ericsson M., Esteban M., Niles E. G., Griffiths G. Assembly of vaccinia virus: incorporation of p14 and p32 into the membrane of the intracellular mature virus. J Virol. 1995 Jun;69(6):3560–3574. doi: 10.1128/jvi.69.6.3560-3574.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sodeik B., Doms R. W., Ericsson M., Hiller G., Machamer C. E., van 't Hof W., van Meer G., Moss B., Griffiths G. Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J Cell Biol. 1993 May;121(3):521–541. doi: 10.1083/jcb.121.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sodeik B., Griffiths G., Ericsson M., Moss B., Doms R. W. Assembly of vaccinia virus: effects of rifampin on the intracellular distribution of viral protein p65. J Virol. 1994 Feb;68(2):1103–1114. doi: 10.1128/jvi.68.2.1103-1114.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stern W., Dales S. Biogenesis of vaccinia: isolation and characterization of a surface component that elicits antibody suppressing infectivity and cell-cell fusion. Virology. 1976 Nov;75(1):232–241. doi: 10.1016/0042-6822(76)90022-2. [DOI] [PubMed] [Google Scholar]
  52. VanSlyke J. K., Franke C. A., Hruby D. E. Proteolytic maturation of vaccinia virus core proteins: identification of a conserved motif at the N termini of the 4b and 25K virion proteins. J Gen Virol. 1991 Feb;72(Pt 2):411–416. doi: 10.1099/0022-1317-72-2-411. [DOI] [PubMed] [Google Scholar]
  53. Vanslyke J. K., Hruby D. E. Immunolocalization of vaccinia virus structural proteins during virion formation. Virology. 1994 Feb;198(2):624–635. doi: 10.1006/viro.1994.1074. [DOI] [PubMed] [Google Scholar]
  54. Vanslyke J. K., Whitehead S. S., Wilson E. M., Hruby D. E. The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: a degenerate conserved cleavage motif within core proteins. Virology. 1991 Aug;183(2):467–478. doi: 10.1016/0042-6822(91)90976-i. [DOI] [PubMed] [Google Scholar]
  55. Wilton S., Mohandas A. R., Dales S. Organization of the vaccinia envelope and relationship to the structure of intracellular mature virions. Virology. 1995 Dec 20;214(2):503–511. doi: 10.1006/viro.1995.0061. [DOI] [PubMed] [Google Scholar]
  56. Yang W. P., Kao S. Y., Bauer W. R. Biosynthesis and post-translational cleavage of vaccinia virus structural protein VP8. Virology. 1988 Dec;167(2):585–590. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES