Abstract
1. The modulation of L-type calcium channel current (ICa) by fendiline, a diphenylalkylamine type of calcium channel blocker was investigated on guinea-pig ventricular myocytes by use of the whole-cell patch-clamp technique. 2. Fendiline-induced block of ICa is accompanied by modulation of the channel kinetics in a complex manner. The time course of ICa inactivation is significantly faster and the channel availability (f infinity) curve is shifted considerably to more negative potentials by fendiline. These findings can be interpreted qualitatively in terms of a modulated receptor. 3. When the 1,4-dihydropyridine agonist (4R, 4S)-Bay K 8644 was added in presence of 30 microM fendiline a further reduction of ICa instead of the expected stimulatory effect was observed. 4. A similar 'paradoxical' inhibition of ICa was produced by the pure agonist enantiomer (4S)-Bay K 8644. Thus this novel effect of Bay K 8644 cannot be attributed to changes in affinity of the 1,4-dihydropyridine receptor site for (4R)-Bay K 8644 during fendiline action. 5. The IC50 for fendiline was reduced to 3.0 +/- 0.1 microM (control value: 17.0 +/- 2.4 microM) and the Hill slope in its presence was increased to 1.90 +/- 0.1 (control value: 1.39 +/- 0.23) by 1 microM (4R, 4S)-Bay K 8644. 6. (4R,4S)-Bay K 8644 caused the expected stimulation of ICa in the presence of verapamil, diltiazem and nifedipine, overcoming the inhibitory effect of these calcium channel blockers. 7. The 'paradoxical' inhibitory effect of the agonist Bay K 8644 can be explained in terms of an allosteric interaction between fendiline and the dihydropyridine agonist.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayer R., Mannhold R. Fendiline: a review of its basic pharmacological and clinical properties. Pharmatherapeutica. 1987;5(2):103–136. [PubMed] [Google Scholar]
- Bean B. P. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6388–6392. doi: 10.1073/pnas.81.20.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. M., Kunze D. L., Yatani A. Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig. J Physiol. 1986 Oct;379:495–514. doi: 10.1113/jphysiol.1986.sp016266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franckowiak G., Bechem M., Schramm M., Thomas G. The optical isomers of the 1,4-dihydropyridine BAY K 8644 show opposite effects on Ca channels. Eur J Pharmacol. 1985 Aug 15;114(2):223–226. doi: 10.1016/0014-2999(85)90631-4. [DOI] [PubMed] [Google Scholar]
- Grassegger A., Striessnig J., Weiler M., Knaus H. G., Glossmann H. [3H]HOE166 defines a novel calcium antagonist drug receptor--distinct from the 1,4 dihydropyridine binding domain. Naunyn Schmiedebergs Arch Pharmacol. 1989 Dec;340(6 Pt 2):752–759. doi: 10.1007/BF00169685. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
- Johnson J. D., Fugman D. A. Calcium and calmodulin antagonists binding to calmodulin and relaxation of coronary segments. J Pharmacol Exp Ther. 1983 Aug;226(2):330–334. [PubMed] [Google Scholar]
- Lacerda A. E., Brown A. M. Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines. J Gen Physiol. 1989 Jun;93(6):1243–1273. doi: 10.1085/jgp.93.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
- Motulsky H. J., Snavely M. D., Hughes R. J., Insel P. A. Interaction of verapamil and other calcium channel blockers with alpha 1- and alpha 2-adrenergic receptors. Circ Res. 1983 Feb;52(2):226–231. doi: 10.1161/01.res.52.2.226. [DOI] [PubMed] [Google Scholar]
- Patmore L., Duncan G. P., Clarke B., Anderson A. J., Greenhouse R., Pfister J. R. RS 30026: a potent and effective calcium channel agonist. Br J Pharmacol. 1990 Apr;99(4):687–694. doi: 10.1111/j.1476-5381.1990.tb12990.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanguinetti M. C., Kass R. S. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res. 1984 Sep;55(3):336–348. doi: 10.1161/01.res.55.3.336. [DOI] [PubMed] [Google Scholar]
- Schreibmayer W., Tritthart H. A., Zernig G., Piper H. M. Single voltage-dependent and outward rectifying K+-channels in isolated rat heart cells. Eur Biophys J. 1985;11(4):259–263. doi: 10.1007/BF00262003. [DOI] [PubMed] [Google Scholar]
- Spedding M., Berg C. Interactions between a "calcium channel agonist", Bay K 8644, and calcium antagonists differentiate calcium antagonist subgroups in K+-depolarized smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1984 Nov;328(1):69–75. doi: 10.1007/BF00496109. [DOI] [PubMed] [Google Scholar]
- Spedding M. Direct inhibitory effects of some 'calcium-antagonists' and trifluoperazine on the contractile proteins in smooth muscle. Br J Pharmacol. 1983 May;79(1):225–231. doi: 10.1111/j.1476-5381.1983.tb10516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starmer C. F., Grant A. O. Phasic ion channel blockade. A kinetic model and parameter estimation procedure. Mol Pharmacol. 1985 Oct;28(4):348–356. [PubMed] [Google Scholar]
- Trautwein W., McDonald T. F., Tripathi O. Calcium conductance and tension in mammalian ventricular muscle. Pflugers Arch. 1975;354(1):55–74. doi: 10.1007/BF00584503. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Bean B. P., Hess P., Lansman J. B., Nilius B., Nowycky M. C. Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol. 1986 Jul;18(7):691–710. doi: 10.1016/s0022-2828(86)80941-5. [DOI] [PubMed] [Google Scholar]
- Tytgat J., Vereecke J., Carmeliet E. A combined study of sodium current and T-type calcium current in isolated cardiac cells. Pflugers Arch. 1990 Oct;417(2):142–148. doi: 10.1007/BF00370691. [DOI] [PubMed] [Google Scholar]
- Uehara A., Hume J. R. Interactions of organic calcium channel antagonists with calcium channels in single frog atrial cells. J Gen Physiol. 1985 May;85(5):621–647. doi: 10.1085/jgp.85.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vághy P. L., Johnson J. D., Matlib M. A., Wang T., Schwartz A. Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. J Biol Chem. 1982 Jun 10;257(11):6000–6002. [PubMed] [Google Scholar]
