Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 May;106(1):101–108. doi: 10.1111/j.1476-5381.1992.tb14300.x

Imidazoline binding sites in human placenta: evidence for heterogeneity and a search for physiological function.

S Diamant 1, T Eldar-Geva 1, D Atlas 1
PMCID: PMC1907438  PMID: 1324063

Abstract

1. An alpha 2-adrenoceptor antagonist, idazoxan, that binds to both alpha 2-adrenoceptors and to imidazoline sites (IR), has been used to characterize human placental IR. Human placenta is shown to be the richest source of IR (1800 +/- 100 fmol mg-1 protein; Kd 38.9 +/- 3.4 nM). 2. Primary cells derived from human placenta and grown in monolayers, also displayed a high density of receptors (3209 +/- 136 fmol mg-1 in cytotrophoblasts and 3642 +/- 144 fmol mg-1 protein in syncytiotrophoblast enriched cell culture). 3. [3H]-idazoxan did not show binding characteristics of alpha 2-adrenoceptors in human placental membranes or human trophoblastic cells, thus making it a ligand of choice to study the imidazoline site. The tissue appeared to be lacking alpha 2-adrenoceptors in that other alpha 2-adrenoceptor ligands, [3H]-rauwolscine and [3H]-clonidine, do not bind to alpha 2-adrenoceptors in human placenta. 4. IRs are localized on the cell surface, as determined by the release of bound [3H]-idazoxan from cells, when washed with high ionic/acidic medium. 5. Imidazoline receptors of human placenta display high affinity for amiloride (72 +/- 27 nM). The high affinity was used as a criterion to classify IR to IRa subtype (placenta, rabbit kidney, rabbit liver and rabbit adipose cells) as opposed to the IRb subtype which display low affinity for amiloride (greater than 2 microM, in all the other tissues).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
101

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlas D., Burstein Y. Isolation and partial purification of a clonidine-displacing endogenous brain substance. Eur J Biochem. 1984 Oct 15;144(2):287–293. doi: 10.1111/j.1432-1033.1984.tb08462.x. [DOI] [PubMed] [Google Scholar]
  2. Atlas D. Clonidine-displacing substance (CDS) and its putative imidazoline receptor. New leads for further divergence of alpha 2-adrenergic receptor activity. Biochem Pharmacol. 1991 Jun 1;41(11):1541–1549. doi: 10.1016/0006-2952(91)90152-u. [DOI] [PubMed] [Google Scholar]
  3. Atlas D., Diamant S., Fales H. M., Pannell L. The brain's own clonidine: purification and characterization of endogenous clonidine displacing substance from brain. J Cardiovasc Pharmacol. 1987;10 (Suppl 12):S122–S127. [PubMed] [Google Scholar]
  4. Atlas D., Sabol S. L. Interaction of clonidine and clonidine analogues with alpha-adrenergic receptors of neuroblastoma X glioma hybrid cells and rat brain: comparison of ligand binding with inhibition of adenylate cyclase. Eur J Biochem. 1981 Jan;113(3):521–529. doi: 10.1111/j.1432-1033.1981.tb05094.x. [DOI] [PubMed] [Google Scholar]
  5. Barbry P., Champe M., Chassande O., Munemitsu S., Champigny G., Lingueglia E., Maes P., Frelin C., Tartar A., Ullrich A. Human kidney amiloride-binding protein: cDNA structure and functional expression. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7347–7351. doi: 10.1073/pnas.87.19.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bidet M., Poujeol P., Parini A. Effect of imidazolines on Na+ transport and intracellular pH in renal proximal tubule cells. Biochim Biophys Acta. 1990 May 9;1024(1):173–178. doi: 10.1016/0005-2736(90)90221-9. [DOI] [PubMed] [Google Scholar]
  7. Breuer W. Characterization of chloride channels in membrane vesicles from the kidney outer medulla. J Membr Biol. 1989 Jan;107(1):35–42. doi: 10.1007/BF01871081. [DOI] [PubMed] [Google Scholar]
  8. Coupry I., Atlas D., Podevin R. A., Uzielli I., Parini A. Imidazoline-guanidinium receptive site in renal proximal tubule: asymmetric distribution, regulation by cations and interaction with an endogenous clonidine displacing substance. J Pharmacol Exp Ther. 1990 Jan;252(1):293–299. [PubMed] [Google Scholar]
  9. Coupry I., Podevin R. A., Dausse J. P., Parini A. Evidence for imidazoline binding sites in basolateral membranes from rabbit kidney. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1055–1060. doi: 10.1016/s0006-291x(87)80177-8. [DOI] [PubMed] [Google Scholar]
  10. Cuthbert A. W., Fanelli G. M. Effects of some pyrazinecarboxamides on sodium transport in frog skin. Br J Pharmacol. 1978 May;63(1):139–149. doi: 10.1111/j.1476-5381.1978.tb07783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Diamant S., Agranat I., Goldblum A., Cohen S., Atlas D. Beta-adrenergic activity and conformation of the antihypertensive specific alpha 2-agonist drug, guanabenz. Biochem Pharmacol. 1985 Feb 15;34(4):491–498. doi: 10.1016/0006-2952(85)90179-0. [DOI] [PubMed] [Google Scholar]
  12. Diamant S., Atlas D. An endogenous brain substance, CDS (clonidine-displacing-substance), inhibits the twitch response of rat vas deferens. Biochem Biophys Res Commun. 1986 Jan 14;134(1):184–190. doi: 10.1016/0006-291x(86)90545-0. [DOI] [PubMed] [Google Scholar]
  13. Diamant S., Eldor A., Atlas D. A low molecular weight brain substance interacts, similarly to clonidine, with alpha 2-adrenoceptors of human platelets. Eur J Pharmacol. 1987 Dec 15;144(3):247–255. doi: 10.1016/0014-2999(87)90377-3. [DOI] [PubMed] [Google Scholar]
  14. Doxey J. C., Roach A. G., Smith C. F. Studies on RX 781094: a selective, potent and specific antagonist of alpha 2-adrenoceptors. Br J Pharmacol. 1983 Mar;78(3):489–505. doi: 10.1111/j.1476-5381.1983.tb08809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ernsberger P., Meeley M. P., Reis D. J. An endogenous substance with clonidine-like properties: selective binding to imidazole sites in the ventrolateral medulla. Brain Res. 1988 Feb 16;441(1-2):309–318. doi: 10.1016/0006-8993(88)91409-6. [DOI] [PubMed] [Google Scholar]
  16. Feder D., Im M. J., Klein H. W., Hekman M., Holzhöfer A., Dees C., Levitzki A., Helmreich E. J., Pfeuffer T. Reconstitution of beta 1-adrenoceptor-dependent adenylate cyclase from purified components. EMBO J. 1986 Jul;5(7):1509–1514. doi: 10.1002/j.1460-2075.1986.tb04390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Galski H., Fridovich S. E., Weinstein D., De Groot N., Segal S., Folman R., Hochberg A. A. Synthesis and secretion of alkaline phosphatase in vitro from first-trimester and term human placentas. Biochem J. 1981 Mar 15;194(3):857–866. doi: 10.1042/bj1940857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gardey-Levassort C., Ventura M. A., Thiroux G., Olive G. An attempt to identify alpha-adrenoceptors in the human placenta. Dev Pharmacol Ther. 1984;7 (Suppl 1):85–88. doi: 10.1159/000457233. [DOI] [PubMed] [Google Scholar]
  19. Haigler H. T., Maxfield F. R., Willingham M. C., Pastan I. Dansylcadaverine inhibits internalization of 125I-epidermal growth factor in BALB 3T3 cells. J Biol Chem. 1980 Feb 25;255(4):1239–1241. [PubMed] [Google Scholar]
  20. Hamilton C. A., Reid J. L., Yakubu M. A. [3H]yohimbine and [3H]idazoxan bind to different sites on rabbit forebrain and kidney membranes. Eur J Pharmacol. 1988 Feb 9;146(2-3):345–348. doi: 10.1016/0014-2999(88)90314-7. [DOI] [PubMed] [Google Scholar]
  21. Johnson L. W., Smith C. H. Neutral amino acid transport systems of microvillous membrane of human placenta. Am J Physiol. 1988 Jun;254(6 Pt 1):C773–C780. doi: 10.1152/ajpcell.1988.254.6.C773. [DOI] [PubMed] [Google Scholar]
  22. Kaczorowski G. J., Barros F., Dethmers J. K., Trumble M. J., Cragoe E. J., Jr Inhibition of Na+/Ca2+ exchange in pituitary plasma membrane vesicles by analogues of amiloride. Biochemistry. 1985 Mar 12;24(6):1394–1403. doi: 10.1021/bi00327a017. [DOI] [PubMed] [Google Scholar]
  23. Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
  24. Kliman H. J., Nestler J. E., Sermasi E., Sanger J. M., Strauss J. F., 3rd Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986 Apr;118(4):1567–1582. doi: 10.1210/endo-118-4-1567. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Langin D., Lafontan M. [3H]idazoxan binding at non-alpha 2-adrenoceptors in rabbit adipocyte membranes. Eur J Pharmacol. 1989 Jan 10;159(2):199–203. doi: 10.1016/0014-2999(89)90707-3. [DOI] [PubMed] [Google Scholar]
  27. Mahan L. C., Motulsky H. J., Insel P. A. Do agonists promote rapid internalization of beta-adrenergic receptors? Proc Natl Acad Sci U S A. 1985 Oct;82(19):6566–6570. doi: 10.1073/pnas.82.19.6566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Michel M. C., Brodde O. E., Schnepel B., Behrendt J., Tschada R., Motulsky H. J., Insel P. A. [3H]idazoxan and some other alpha 2-adrenergic drugs also bind with high affinity to a nonadrenergic site. Mol Pharmacol. 1989 Mar;35(3):324–330. [PubMed] [Google Scholar]
  29. Michel M. C., Insel P. A. Are there multiple imidazoline binding sites? Trends Pharmacol Sci. 1989 Sep;10(9):342–344. doi: 10.1016/0165-6147(89)90002-3. [DOI] [PubMed] [Google Scholar]
  30. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  31. Parini A., Coupry I., Graham R. M., Uzielli I., Atlas D., Lanier S. M. Characterization of an imidazoline/guanidinium receptive site distinct from the alpha 2-adrenergic receptor. J Biol Chem. 1989 Jul 15;264(20):11874–11878. [PubMed] [Google Scholar]
  32. Shennan D. B., Boyd C. A. Ion transport by the placenta: a review of membrane transport systems. Biochim Biophys Acta. 1987 Oct 5;906(3):437–457. doi: 10.1016/0304-4157(87)90019-0. [DOI] [PubMed] [Google Scholar]
  33. Simchowitz L., Cragoe E. J., Jr Inhibition of chemotactic factor-activated Na+/H+ exchange in human neutrophils by analogues of amiloride: structure-activity relationships in the amiloride series. Mol Pharmacol. 1986 Aug;30(2):112–120. [PubMed] [Google Scholar]
  34. Tesson F., Prip-Buus C., Lemoine A., Pegorier J. P., Parini A. Subcellular distribution of imidazoline-guanidinium-receptive sites in human and rabbit liver. Major localization to the mitochondrial outer membrane. J Biol Chem. 1991 Jan 5;266(1):155–160. [PubMed] [Google Scholar]
  35. Vigne P., Lazdunski M., Frelin C. Guanabenz, guanochlor, guanoxan and idazoxan bind with high affinity to non-adrenergic sites in pig kidney membranes. Eur J Pharmacol. 1989 Jan 31;160(2):295–298. doi: 10.1016/0014-2999(89)90503-7. [DOI] [PubMed] [Google Scholar]
  36. Wikberg J. E. High affinity binding of idazoxan to a non-catecholaminergic binding site in the central nervous system: description of a putative idazoxan-receptor. Pharmacol Toxicol. 1989 Jan;64(1):152–155. doi: 10.1111/j.1600-0773.1989.tb00620.x. [DOI] [PubMed] [Google Scholar]
  37. Wikberg J. E., Uhlén S. Further characterization of the guinea pig cerebral cortex idazoxan receptor: solubilization, distinction from the imidazole site, and demonstration of cirazoline as an idazoxan receptor-selective drug. J Neurochem. 1990 Jul;55(1):192–203. doi: 10.1111/j.1471-4159.1990.tb08838.x. [DOI] [PubMed] [Google Scholar]
  38. Zonnenchein R., Diamant S., Atlas D. Imidazoline receptors in rat liver cells: a novel receptor or a subtype of alpha 2-adrenoceptors? Eur J Pharmacol. 1990 Nov 6;190(1-2):203–215. doi: 10.1016/0014-2999(90)94127-j. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES