Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 May;106(1):157–165. doi: 10.1111/j.1476-5381.1992.tb14309.x

Contractions induced by potassium-free solution and potassium relaxation in vascular smooth muscle of hypertensive and normotensive rats.

P Arvola 1, I Pörsti 1, P Vuorinen 1, A Pekki 1, H Vapaatalo 1
PMCID: PMC1907449  PMID: 1504724

Abstract

1. Vascular contractions induced by K(+)-free solution and relaxation responses following the return of K+ to the organ bath were studied in mesenteric arterial rings from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) with particular focus on the role of vascular adrenergic nerve-endings and endothelium. 2. In endothelium-denuded rings the omission of K+ from the incubation medium resulted in gradual contractions, the rate of which was slower in SHR than WKY. Nifedipine (1 microM) inhibited the contractions more effectively in SHR than WKY. 3. Adrenergic denervation in vitro with 6-hydroxydopamine reduced the contractions induced by the K(+)-free medium in endothelium-denuded rings. The remaining contractions after denervation were markedly greater in SHR than WKY. 4. The presence of intact vascular endothelium attenuated the K(+)-free contractions in both strains, the attenuation being smaller in SHR than WKY. NG-nitro-L-arginine methyl ester (L-NAME, 0.1 mM) and methylene blue (10 microM), but not indomethacin (10 microM), abolished the attenuating effect of endothelium on the K(+)-free contractions. L-Arginine (1 mM) reversed the effect of L-NAME in WKY but not in SHR. 5. The re-addition of K+ after full K(+)-free contractions dose-dependently relaxed the rings. The rate of this K(+)-induced relaxation was significantly slower in SHR than WKY at all K+ concentrations (0.1-5.9 mM) studied, whether the endothelium or functioning adrenergic nerve-endings were present or not. Ouabain (1 mM) totally inhibited the K+ relaxation in SHR but only partially in WKY.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
157

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashida T., Blaustein M. P. Regulation of cell calcium and contractility in mammalian arterial smooth muscle: the role of sodium-calcium exchange. J Physiol. 1987 Nov;392:617–635. doi: 10.1113/jphysiol.1987.sp016800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P., Sturek M., Puga A., Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ Res. 1986 Aug;59(2):229–235. doi: 10.1161/01.res.59.2.229. [DOI] [PubMed] [Google Scholar]
  3. Blaustein M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol. 1977 May;232(5):C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [DOI] [PubMed] [Google Scholar]
  4. Boeynaems J. M., Ramboer I. Effects of changes in extra- and intracellular K+ on the endothelial production of prostacyclin. Br J Pharmacol. 1989 Nov;98(3):966–972. doi: 10.1111/j.1476-5381.1989.tb14627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bohr D. F., Bruner C. A., Lamb F. S., Webb R. C. Physiology of vascular smooth muscle in relation to hypertension. Acta Physiol Scand Suppl. 1988;571:15–24. [PubMed] [Google Scholar]
  6. Bohr D. F., Webb R. C. Vascular smooth muscle function and its changes in hypertension. Am J Med. 1984 Oct 5;77(4A):3–16. doi: 10.1016/s0002-9343(84)80032-7. [DOI] [PubMed] [Google Scholar]
  7. Bonaccorsi A., Hermsmeyer K., Aprigliano O., Smith C. B., Bohr D. F. Mechanism of potassium relaxation of arterial muscle. Blood Vessels. 1977;14(5):261–276. doi: 10.1159/000158133. [DOI] [PubMed] [Google Scholar]
  8. Chen C. C., Lin-Shiau S. Y. Decreased Na+-K+-ATPase activity and [3H]ouabain binding sites in various tissues of spontaneously hypertensive rats. Eur J Pharmacol. 1986 Apr 2;122(3):311–319. doi: 10.1016/0014-2999(86)90411-5. [DOI] [PubMed] [Google Scholar]
  9. Dominiczak A. F., Bohr D. F. Cell membrane abnormalities and the regulation of intracellular calcium concentration in hypertension. Clin Sci (Lond) 1990 Nov;79(5):415–423. doi: 10.1042/cs0790415. [DOI] [PubMed] [Google Scholar]
  10. Field F. P., Soltis E. E. Vascular reactivity in the spontaneously hypertensive rat. Effect of high pressure stress and extracellular calcium. Hypertension. 1985 Mar-Apr;7(2):228–235. doi: 10.1161/01.hyp.7.2.228. [DOI] [PubMed] [Google Scholar]
  11. Furchgott R. F., Vanhoutte P. M. Endothelium-derived relaxing and contracting factors. FASEB J. 1989 Jul;3(9):2007–2018. [PubMed] [Google Scholar]
  12. Furspan P. B., Rinaldi G. J., Hoffman K., Bohr D. F. Dietary calcium and cell membrane abnormality in genetic hypertension. Hypertension. 1989 Jun;13(6 Pt 2):727–730. doi: 10.1161/01.hyp.13.6.727. [DOI] [PubMed] [Google Scholar]
  13. Gross S. S., Jaffe E. A., Levi R., Kilbourn R. G. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem Biophys Res Commun. 1991 Aug 15;178(3):823–829. doi: 10.1016/0006-291x(91)90965-a. [DOI] [PubMed] [Google Scholar]
  14. Hermsmeyer K., Harder D. Membrane ATPase mechanism of K+-return relaxation in arterial muscles of stroke-prone SHR and WKY. Am J Physiol. 1986 Apr;250(4 Pt 1):C557–C562. doi: 10.1152/ajpcell.1986.250.4.C557. [DOI] [PubMed] [Google Scholar]
  15. Hopp L., Khalil F., Tamura H., Kino M., Searle B. M., Tokushige A., Aviv A. Ouabain binding to cultured vascular smooth muscle cells of the spontaneously hypertensive rat. Am J Physiol. 1986 Jun;250(6 Pt 1):C948–C954. doi: 10.1152/ajpcell.1986.250.6.C948. [DOI] [PubMed] [Google Scholar]
  16. Ishii K., Chang B., Kerwin J. F., Jr, Huang Z. J., Murad F. N omega-nitro-L-arginine: a potent inhibitor of endothelium-derived relaxing factor formation. Eur J Pharmacol. 1990 Feb 6;176(2):219–223. doi: 10.1016/0014-2999(90)90531-a. [DOI] [PubMed] [Google Scholar]
  17. Johns A., Leijten P., Yamamoto H., Hwang K., van Breemen C. Calcium regulation in vascular smooth muscle contractility. Am J Cardiol. 1987 Jan 23;59(2):18A–23A. doi: 10.1016/0002-9149(87)90171-8. [DOI] [PubMed] [Google Scholar]
  18. Kelm M., Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res. 1990 Jun;66(6):1561–1575. doi: 10.1161/01.res.66.6.1561. [DOI] [PubMed] [Google Scholar]
  19. Lamb F. S., Moreland R. S., Webb R. C. Calcium and contractile responses to ouabain and potassium-free solution in aortae from spontaneously hypertensive rats. J Hypertens. 1988 Oct;6(10):821–828. [PubMed] [Google Scholar]
  20. Lederballe Pedersen O., Mikkelsen E., Andersson K. E. Effects of extracellular calcium on potassium and noradrenaline induced contractions in the aorta of spontaneously hypertensive rats--increased sensitivity to nifedipine. Acta Pharmacol Toxicol (Copenh) 1978 Aug;43(2):137–144. doi: 10.1111/j.1600-0773.1978.tb02247.x. [DOI] [PubMed] [Google Scholar]
  21. Loirand G., Pacaud P., Mironneau C., Mironneau J. Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch. 1986 Nov;407(5):566–568. doi: 10.1007/BF00657519. [DOI] [PubMed] [Google Scholar]
  22. Manjeet S., Sim M. K. Decreased Na+K+ATPase activity in the aortic endothelium and smooth muscle of the spontaneously hypertensive rats. Clin Exp Hypertens A. 1987;9(4):797–812. doi: 10.3109/10641968709161450. [DOI] [PubMed] [Google Scholar]
  23. Mulvany M. J., Aalkjaer C., Petersen T. T. Intracellular sodium, membrane potential, and contractility of rat mesenteric small arteries. Circ Res. 1984 Jun;54(6):740–749. doi: 10.1161/01.res.54.6.740. [DOI] [PubMed] [Google Scholar]
  24. Mulvany M. J. Changes in sodium pump activity and vascular contraction. J Hypertens. 1985 Oct;3(5):429–436. [PubMed] [Google Scholar]
  25. Myers P. R., Minor R. L., Jr, Guerra R., Jr, Bates J. N., Harrison D. G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature. 1990 May 10;345(6271):161–163. doi: 10.1038/345161a0. [DOI] [PubMed] [Google Scholar]
  26. Overbeck H. W., Derifield R. S., Pamnani M. B., Sözen T. Attenuated vasodilator responses to K+ in essential hypertensive men. J Clin Invest. 1974 Mar;53(3):678–686. doi: 10.1172/JCI107605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pique J. M., Whittle B. J., Esplugues J. V. The vasodilator role of endogenous nitric oxide in the rat gastric microcirculation. Eur J Pharmacol. 1989 Dec 19;174(2-3):293–296. doi: 10.1016/0014-2999(89)90324-5. [DOI] [PubMed] [Google Scholar]
  28. Pörsti I., Arvola P., Wuorela H., Vapaatalo H. High calcium diet augments vascular potassium relaxation in hypertensive rats. Hypertension. 1992 Jan;19(1):85–92. doi: 10.1161/01.hyp.19.1.85. [DOI] [PubMed] [Google Scholar]
  29. Raeburn D., Fedan J. S. The effects of alterations in electrogenic Na+/K+ -pumping in guinea-pig isolated trachealis: their modulation by the epithelium. Br J Pharmacol. 1989 Oct;98(2):343–350. doi: 10.1111/j.1476-5381.1989.tb12602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rubanyi G. M., Vanhoutte P. M. Potassium-free solution prevents the action but not the release of endothelium-derived relaxing factor. Eur J Pharmacol. 1988 Jan 19;145(3):351–355. doi: 10.1016/0014-2999(88)90441-4. [DOI] [PubMed] [Google Scholar]
  31. Rusch N. J., Hermsmeyer K. Calcium currents are altered in the vascular muscle cell membrane of spontaneously hypertensive rats. Circ Res. 1988 Dec;63(6):997–1002. doi: 10.1161/01.res.63.6.997. [DOI] [PubMed] [Google Scholar]
  32. Sakai Y., Inazu M. Sodium pump activity and contraction of renal artery from spontaneously hypertensive rats. Eur J Pharmacol. 1991 Aug 6;200(2-3):227–231. doi: 10.1016/0014-2999(91)90576-c. [DOI] [PubMed] [Google Scholar]
  33. Shirasaki Y., Kolm P., Nickols G. A., Lee T. J. Endothelial regulation of cyclic GMP and vascular responses in hypertension. J Pharmacol Exp Ther. 1988 Apr;245(1):53–58. [PubMed] [Google Scholar]
  34. Smith R. E., Palmer R. M., Moncada S. Coronary vasodilatation induced by endotoxin in the rabbit isolated perfused heart is nitric oxide-dependent and inhibited by dexamethasone. Br J Pharmacol. 1991 Sep;104(1):5–6. doi: 10.1111/j.1476-5381.1991.tb12375.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Syme P. D., Dixon R. M., Aronson J. K., Grahame-Smith D. G., Radda G. K. Evidence for increased in vivo sodium-potassium pump activity and potassium efflux in skeletal muscle of spontaneously hypertensive rats. J Hypertens. 1990 Dec;8(12):1161–1166. doi: 10.1097/00004872-199012000-00014. [DOI] [PubMed] [Google Scholar]
  36. Tamura H., Kino M., Tokushige A., Searle B. M., Aviv A. Increased membrane permeability of skin fibroblasts from the spontaneously hypertensive rat. Hypertension. 1985 Mar-Apr;7(2):300–305. doi: 10.1161/01.hyp.7.2.300. [DOI] [PubMed] [Google Scholar]
  37. Van Breemen C., Cauvin C., Johns A., Leijten P., Yamamoto H. Ca2+ regulation of vascular smooth muscle. Fed Proc. 1986 Nov;45(12):2746–2751. [PubMed] [Google Scholar]
  38. Vane J. R., Anggård E. E., Botting R. M. Regulatory functions of the vascular endothelium. N Engl J Med. 1990 Jul 5;323(1):27–36. doi: 10.1056/NEJM199007053230106. [DOI] [PubMed] [Google Scholar]
  39. Vanhoutte P. M., Lorenz R. R. Na+,K+-ATPase inhibitors and the adrenergic neuroeffector interaction in the blood vessel wall. J Cardiovasc Pharmacol. 1984;6 (Suppl 1):S88–S94. doi: 10.1097/00005344-198400061-00016. [DOI] [PubMed] [Google Scholar]
  40. Watt P. A., Thurston H. Endothelium-dependent relaxation in resistance vessels from the spontaneously hypertensive rats. J Hypertens. 1989 Aug;7(8):661–666. doi: 10.1097/00004872-198908000-00010. [DOI] [PubMed] [Google Scholar]
  41. Webb R. C., Bohr D. F. Potassium relaxation of vascular smooth muscle from spontaneously hypertensive rats. Blood Vessels. 1979;16(2):71–79. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES