Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 May;106(1):55–60. doi: 10.1111/j.1476-5381.1992.tb14292.x

Studies on curare-like action of 2,2',2''-tripyridine in the mouse phrenic nerve-diaphragm.

S Y Lin-Shiau 1, K S Hsu 1, W M Fu 1
PMCID: PMC1907464  PMID: 1504731

Abstract

1. The curare-like action of 2,2',2''-tripyridine (a synthetic by-product of the herbicide, paraquat) was studied in mouse phrenic nerve-diaphragm preparation. The inhibition by 2,2',2''-tripyridine of nerve-evoked twitches was dependent on the concentration, ranging from 1 to 100 microM, which had no significant effect on the twitch amplitudes evoked by direct muscle stimulation. 2. The twitch inhibition by 2,2',2''-tripyridine was reversible and could be antagonized by anticholinesterase agents such as neostigmine, physostigmine as well as ecothiophate. 3. Pretreatment with either 0.7 microM (+)-tubocurarine or 2.2 microM succinylcholine shifted the concentration-inhibition curve of 2,2',2''-tripyridine to the left. 4. 2,2'2''-Tripyridine inhibited not only acetylcholine-induced contracture of the denervated mouse diaphragm but also that of the chick biventer cervicis muscle. Like (+)-tubocurarine, 2,2',2''-tripyridine protected the twitches from the inhibition by alpha-bungarotoxin and also specifically inhibited the binding of [125I]-alpha-bungarotoxin to the mouse diaphragm. All of these findings indicate that 2,2',2''-tripyridine possesses curare-like action and inhibits the muscle contractions through binding to postsynaptic acetylcholine receptors. 5. The postsynaptic inhibition exhibited by 2,2',2''-tripyridine was also implicated in the tetanic fade, a decrease in the amplitude of miniature endplate potential (m.e.p.p.) and endplate potential (e.p.p.). 6. The clinical implication of these findings is that 2,2',2''-tripyridine may be involved in the cause of respiratory failure in paraquat-intoxicated workers since 2,2',2''-tripyridine is a by-product of paraquat synthesis.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman W. C. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980 Dec;59(12):935–943. [PubMed] [Google Scholar]
  2. Chang C. C., Hong S. J. A regenerating release of acetylcholine from mouse motor nerve terminals treated with anticholinesterase agents. Neurosci Lett. 1986 Aug 29;69(2):203–207. doi: 10.1016/0304-3940(86)90604-x. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GINSBORG B. L., WARRINER J. The isolated chick biventer cervicis nerve-muscle preparation. Br J Pharmacol Chemother. 1960 Sep;15:410–411. doi: 10.1111/j.1476-5381.1960.tb01264.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howe-Grant M., Wu K. C., Bauer W. R., Lippard S. J. Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs. Biochemistry. 1976 Sep 21;15(19):4339–4346. doi: 10.1021/bi00664a031. [DOI] [PubMed] [Google Scholar]
  7. Jennette K. W., Lippard S. J., Vassiliades G. A., Bauer W. R. Metallointercalation reagents. 2-hydroxyethanethiolato(2,2',2'-terpyridine)-platinum(II) monocation binds strongly to DNA by intercalation. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3839–3843. doi: 10.1073/pnas.71.10.3839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kharkevich D. A., Skoldinov A. P. On some principles of interaction of curare-like agents with acetylcholine receptors of skeletal muscles. J Pharm Pharmacol. 1980 Nov;32(11):733–739. doi: 10.1111/j.2042-7158.1980.tb13057.x. [DOI] [PubMed] [Google Scholar]
  9. Kitz R. J., Karis J. H., Ginsburg S. A study in vitro of new short-acting, non-depolarizing neuromuscular blocking agents. Biochem Pharmacol. 1969 Apr;18(4):871–881. doi: 10.1016/0006-2952(69)90058-6. [DOI] [PubMed] [Google Scholar]
  10. LILEY A. W., NORTH K. A. An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J Neurophysiol. 1953 Sep;16(5):509–527. doi: 10.1152/jn.1953.16.5.509. [DOI] [PubMed] [Google Scholar]
  11. Lee C. Y., Chang S. L., Kau S. T., Luh S. H. Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components. J Chromatogr. 1972 Oct 5;72(1):71–82. doi: 10.1016/0021-9673(72)80009-8. [DOI] [PubMed] [Google Scholar]
  12. Miledi R., Potter L. T. Acetylcholine receptors in muscle fibres. Nature. 1971 Oct 29;233(5322):599–603. doi: 10.1038/233599a0. [DOI] [PubMed] [Google Scholar]
  13. PATON W. D. M., ZAIMIS E. The methonium. Pharmacol Rev. 1952 Sep;4(3):219–253. [PubMed] [Google Scholar]
  14. Standaert F. G. Release of transmitter at the neuromuscular junction. Br J Anaesth. 1982 Feb;54(2):131–145. doi: 10.1093/bja/54.2.131. [DOI] [PubMed] [Google Scholar]
  15. Wang J. D., Li W. E., Hu F. C., Hu K. H. Occupational risk and the development of premalignant skin lesions among paraquat manufacturers. Br J Ind Med. 1987 Mar;44(3):196–200. doi: 10.1136/oem.44.3.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wilson D. F. Influence of presynaptic receptors on neuromuscular transmission in rat. Am J Physiol. 1982 May;242(5):C366–C372. doi: 10.1152/ajpcell.1982.242.5.C366. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES