Abstract
1. The effects of pituitary adenylate cyclase activating polypeptide (PACAP)-27 and PACAP-38 were investigated and compared with vasoactive intestinal polypeptide (VIP) responses in voltage clamped preparations of rat jejunum. Under these conditions electrogenic ion secretion was continuously recorded. 2. PACAP-27 is the most potent secretagogue described thus far, exhibiting a concentration-dependent dual secretory action. At low concentrations it stimulated rapid, transient secretory responses (not seen with either PACAP-38 or VIP) and these were inhibited by tetrodotoxin (TTX). At higher nM concentrations of PACAP-27 more prolonged secretory responses predominated which were insensitive to TTX. 3. In the presence of TTX, the concentration-response curve to PACAP-27 gave an EC50 value of 29.4 +/- 5.4 nM (n = 4) compared with 0.8 +/- 0.1 nM (n = 9) for PACAP-27 alone and 30.6 +/- 5.6 nM (n = 5) for PACAP-38. C-terminal fragments of PACAP-38 were not significantly effective. 4. Blockade of muscarinic and nicotinic receptors partially inhibited the low concentration effects of PACAP-27. Substance P desensitization and capsaicin pretreatment were effective at inhibiting the transient secretory PACAP-27 responses. Evidence is presented for selective, high affinity PACAP-27 receptors on submucous neurones innervating the mucosal region of the rat jejunum.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buscail L., Gourlet P., Cauvin A., De Neef P., Gossen D., Arimura A., Miyata A., Coy D. H., Robberecht P., Christophe J. Presence of highly selective receptors for PACAP (pituitary adenylate cyclase activating peptide) in membranes from the rat pancreatic acinar cell line AR 4-2J. FEBS Lett. 1990 Mar 12;262(1):77–81. doi: 10.1016/0014-5793(90)80158-f. [DOI] [PubMed] [Google Scholar]
- Cauvin A., Buscail L., Gourlet P., De Neef P., Gossen D., Arimura A., Miyata A., Coy D. H., Robberecht P., Christophe J. The novel VIP-like hypothalamic polypeptide PACAP interacts with high affinity receptors in the human neuroblastoma cell line NB-OK. Peptides. 1990 Jul-Aug;11(4):773–777. doi: 10.1016/0196-9781(90)90194-a. [DOI] [PubMed] [Google Scholar]
- Cox H. M., Cuthbert A. W., Håkanson R., Wahlestedt C. The effect of neuropeptide Y and peptide YY on electrogenic ion transport in rat intestinal epithelia. J Physiol. 1988 Apr;398:65–80. doi: 10.1113/jphysiol.1988.sp017029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox H. M., Cuthbert A. W. Secretory actions of vasoactive intestinal polypeptide, peptide histidine isoleucine and helodermin in rat small intestine: the effects of putative VIP antagonists upon VIP-induced ion secretion. Regul Pept. 1989 Sep-Oct;26(2):127–135. doi: 10.1016/0167-0115(89)90004-9. [DOI] [PubMed] [Google Scholar]
- Dharmsathaphorn K., Harms V., Yamashiro D. J., Hughes R. J., Binder H. J., Wright E. M. Preferential binding of vasoactive intestinal polypeptide to basolateral membrane of rat and rabbit enterocytes. J Clin Invest. 1983 Jan;71(1):27–35. doi: 10.1172/JCI110748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekblad E., Winther C., Ekman R., Håkanson R., Sundler F. Projections of peptide-containing neurons in rat small intestine. Neuroscience. 1987 Jan;20(1):169–188. doi: 10.1016/0306-4522(87)90010-8. [DOI] [PubMed] [Google Scholar]
- Gottschall P. E., Tatsuno I., Miyata A., Arimura A. Characterization and distribution of binding sites for the hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide. Endocrinology. 1990 Jul;127(1):272–277. doi: 10.1210/endo-127-1-272. [DOI] [PubMed] [Google Scholar]
- Kimura C., Ohkubo S., Ogi K., Hosoya M., Itoh Y., Onda H., Miyata A., Jiang L., Dahl R. R., Stibbs H. H. A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun. 1990 Jan 15;166(1):81–89. doi: 10.1016/0006-291x(90)91914-e. [DOI] [PubMed] [Google Scholar]
- Le Meuth V., Farjaudon N., Bawab W., Chastre E., Rosselin G., Guilloteau P., Gespach C. Characterization of binding sites for VIP-related peptides and activation of adenylate cyclase in developing pancreas. Am J Physiol. 1991 Feb;260(2 Pt 1):G265–G274. doi: 10.1152/ajpgi.1991.260.2.G265. [DOI] [PubMed] [Google Scholar]
- Miyata A., Arimura A., Dahl R. R., Minamino N., Uehara A., Jiang L., Culler M. D., Coy D. H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989 Oct 16;164(1):567–574. doi: 10.1016/0006-291x(89)91757-9. [DOI] [PubMed] [Google Scholar]
- Miyata A., Jiang L., Dahl R. D., Kitada C., Kubo K., Fujino M., Minamino N., Arimura A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990 Jul 31;170(2):643–648. doi: 10.1016/0006-291x(90)92140-u. [DOI] [PubMed] [Google Scholar]
- Morita K., North R. A., Katayama Y. Evidence that substance P is a neurotransmitter in the myenteric plexus. Nature. 1980 Sep 11;287(5778):151–152. doi: 10.1038/287151a0. [DOI] [PubMed] [Google Scholar]
- Mungan Z., Ertan A., Hammer R. A., Arimura A. Effect of pituitary adenylate cyclase activating polypeptide on rat pancreatic exocrine secretion. Peptides. 1991 May-Jun;12(3):559–562. doi: 10.1016/0196-9781(91)90101-t. [DOI] [PubMed] [Google Scholar]
- Ogi K., Kimura C., Onda H., Arimura A., Fujino M. Molecular cloning and characterization of cDNA for the precursor of rat pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun. 1990 Dec 31;173(3):1271–1279. doi: 10.1016/s0006-291x(05)80924-6. [DOI] [PubMed] [Google Scholar]
- Robberecht P., Woussen-Colle M. C., De Neef P., Gourlet P., Buscail L., Vandermeers A., Vandermeers-Piret M. C., Christophe J. The two forms of the pituitary adenylate cyclase activating polypeptide (PACAP (1-27) and PACAP (1-38)) interact with distinct receptors on rat pancreatic AR 4-2J cell membranes. FEBS Lett. 1991 Jul 29;286(1-2):133–136. doi: 10.1016/0014-5793(91)80958-6. [DOI] [PubMed] [Google Scholar]
- Shivers B. D., Görcs T. J., Gottschall P. E., Arimura A. Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology. 1991 Jun;128(6):3055–3065. doi: 10.1210/endo-128-6-3055. [DOI] [PubMed] [Google Scholar]
- Sreedharan S. P., Robichon A., Peterson K. E., Goetzl E. J. Cloning and expression of the human vasoactive intestinal peptide receptor. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4986–4990. doi: 10.1073/pnas.88.11.4986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundler F., Ekblad E., Absood A., Håkanson R., Köves K., Arimura A. Pituitary adenylate cyclase activating peptide: a novel vasoactive intestinal peptide-like neuropeptide in the gut. Neuroscience. 1992;46(2):439–454. doi: 10.1016/0306-4522(92)90064-9. [DOI] [PubMed] [Google Scholar]
- Szerb J. C. Endogenous acetylcholine release and labelled acetylcholine formation from [3H]choline in the myenteric plexus of the guinea-pig ileum. Can J Physiol Pharmacol. 1975 Aug;53(4):566–574. doi: 10.1139/y75-080. [DOI] [PubMed] [Google Scholar]
- Tatsuno I., Gottschall P. E., Köves K., Arimura A. Demonstration of specific binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) in rat astrocytes. Biochem Biophys Res Commun. 1990 May 16;168(3):1027–1033. doi: 10.1016/0006-291x(90)91132-c. [DOI] [PubMed] [Google Scholar]
- Yarrow S., Ferrar J. A., Cox H. M. The effects of capsaicin upon electrogenic ion transport in rat descending colon. Naunyn Schmiedebergs Arch Pharmacol. 1991 Nov;344(5):557–563. doi: 10.1007/BF00170652. [DOI] [PubMed] [Google Scholar]
