Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Jul;106(3):717–726. doi: 10.1111/j.1476-5381.1992.tb14400.x

Characterization of potassium currents modulated by BRL 38227 in rat portal vein.

T Noack 1, P Deitmer 1, G Edwards 1, A H Weston 1
PMCID: PMC1907537  PMID: 1504756

Abstract

1. Smooth muscle cells of the rat portal vein were dispersed by enzymatic treatment and recordings of whole-cell membrane potassium currents were made by the voltage-clamp technique. In isolated cells by use of combined voltage- and current-clamp the effect of BRL 38227 on membrane potential and ionic currents was also studied. 2. BRL 38227 (0.1 to 10 microM) induced a non-inactivating potassium current (IKCO) which developed slowly (900 s to 300 s, respectively) to its full size. These effects of BRL 38227 were reversible. 3. In addition to its K-channel opening properties, BRL 38227 (1 to 10 microM) inhibited the amplitude and changed the activation and inactivation characteristics of a slowly-inactivating, calcium influx-independent, outward potassium current (I(TO)). 4. Application of stationary fluctuation analysis to IKCO, showed a mean single channel current of 0.65 pA at -10 mV under a quasi-physiological potassium gradient. 5. In a combined voltage-clamp/current-clamp configuration, BRL 38227 (1 microM) induced a mean hyperpolarization of 22 mV. 6. The induction of IKCO by BRL 38227 and the associated hyperpolarization were suppressed by glibenclamide (1 to 10 microM) in a concentration-dependent manner. Glibenclamide (1 microM) had no effect on the inhibition of I(TO) by BRL 38227 (1 microM).

Full text

PDF
717

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beech D. J., Bolton T. B. Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein. Br J Pharmacol. 1989 Nov;98(3):851–864. doi: 10.1111/j.1476-5381.1989.tb14614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beech D. J., Bolton T. B. Two components of potassium current activated by depolarization of single smooth muscle cells from the rabbit portal vein. J Physiol. 1989 Nov;418:293–309. doi: 10.1113/jphysiol.1989.sp017841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buckingham R. E., Hamilton T. C., Howlett D. R., Mootoo S., Wilson C. Inhibition by glibenclamide of the vasorelaxant action of cromakalim in the rat. Br J Pharmacol. 1989 May;97(1):57–64. doi: 10.1111/j.1476-5381.1989.tb11923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carbone E., Wanke E., Prestipino G., Possani L. D., Maelicke A. Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature. 1982 Mar 4;296(5852):90–91. doi: 10.1038/296090a0. [DOI] [PubMed] [Google Scholar]
  5. Clark R. B., Giles W. Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties. J Physiol. 1987 Oct;391:235–265. doi: 10.1113/jphysiol.1987.sp016736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edwards G., Henshaw M., Miller M., Weston A. H. Comparison of the effects of several potassium-channel openers on rat bladder and rat portal vein in vitro. Br J Pharmacol. 1991 Mar;102(3):679–686. doi: 10.1111/j.1476-5381.1991.tb12233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards G., Weston A. H. Potassium channel openers and vascular smooth muscle relaxation. Pharmacol Ther. 1990;48(2):237–258. doi: 10.1016/0163-7258(90)90082-d. [DOI] [PubMed] [Google Scholar]
  8. Escande D., Thuringer D., Leguern S., Cavero I. The potassium channel opener cromakalim (BRL 34915) activates ATP-dependent K+ channels in isolated cardiac myocytes. Biochem Biophys Res Commun. 1988 Jul 29;154(2):620–625. doi: 10.1016/0006-291x(88)90184-2. [DOI] [PubMed] [Google Scholar]
  9. Gelband C. H., Silberberg S. D., Groschner K., van Breemen C. ATP inhibits smooth muscle Ca2(+)-activated K+ channels. Proc Biol Sci. 1990 Oct 22;242(1303):23–28. doi: 10.1098/rspb.1990.0098. [DOI] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Hu S. L., Kim H. S., Okolie P., Weiss G. B. Alterations by glyburide of effects of BRL 34915 and P 1060 on contraction, 86Rb efflux and the maxi-K+ channel in rat portal vein. J Pharmacol Exp Ther. 1990 May;253(2):771–777. [PubMed] [Google Scholar]
  12. Inoue I., Nakaya Y., Nakaya S., Mori H. Extracellular Ca2+-activated K channel in coronary artery smooth muscle cells and its role in vasodilation. FEBS Lett. 1989 Sep 25;255(2):281–284. doi: 10.1016/0014-5793(89)81106-8. [DOI] [PubMed] [Google Scholar]
  13. Kajioka S., Kitamura K., Kuriyama H. Guanosine diphosphate activates an adenosine 5'-triphosphate-sensitive K+ channel in the rabbit portal vein. J Physiol. 1991 Dec;444:397–418. doi: 10.1113/jphysiol.1991.sp018885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kajioka S., Oike M., Kitamura K. Nicorandil opens a calcium-dependent potassium channel in smooth muscle cells of the rat portal vein. J Pharmacol Exp Ther. 1990 Sep;254(3):905–913. [PubMed] [Google Scholar]
  15. Klöckner U., Isenberg G. Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflugers Arch. 1985 Dec;405(4):329–339. doi: 10.1007/BF00595685. [DOI] [PubMed] [Google Scholar]
  16. Klöckner U., Trieschmann U., Isenberg G. Pharmacological modulation of calcium and potassium channels in isolated vascular smooth muscle cells. Arzneimittelforschung. 1989 Jan;39(1A):120–126. [PubMed] [Google Scholar]
  17. Lammel E., Deitmer P., Noack T. Suppression of steady membrane currents by acetylcholine in single smooth muscle cells of the guinea-pig gastric fundus. J Physiol. 1991 Jan;432:259–282. doi: 10.1113/jphysiol.1991.sp018384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neher E., Stevens C. F. Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng. 1977;6:345–381. doi: 10.1146/annurev.bb.06.060177.002021. [DOI] [PubMed] [Google Scholar]
  19. Newgreen D. T., Bray K. M., McHarg A. D., Weston A. H., Duty S., Brown B. S., Kay P. B., Edwards G., Longmore J., Southerton J. S. The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim. Br J Pharmacol. 1990 Jul;100(3):605–613. doi: 10.1111/j.1476-5381.1990.tb15854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Noack T. h., Deitmer P., Golenhofen K. Features of a calcium independent, caffeine sensitive outward current in single smooth muscle cells from guinea pig protal vein. Pflugers Arch. 1990 Jun;416(4):467–469. doi: 10.1007/BF00370756. [DOI] [PubMed] [Google Scholar]
  21. Noack T., Deitmer P., Lammel E. Characterization of membrane currents in single smooth muscle cells from the guinea-pig gastric antrum. J Physiol. 1992;451:387–417. doi: 10.1113/jphysiol.1992.sp019170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Okabe K., Kajioka S., Nakao K., Kitamura K., Kuriyama H., Weston A. H. Actions of cromakalim on ionic currents recorded from single smooth muscle cells of the rat portal vein. J Pharmacol Exp Ther. 1990 Feb;252(2):832–839. [PubMed] [Google Scholar]
  23. Pavenstädt H., Lindeman V., Lindeman S., Kunzelmann K., Späth M., Greger R. Effect of depolarizing and hyperpolarizing agents on the membrane potential difference of primary cultures of rabbit aorta vascular smooth muscle cells. Pflugers Arch. 1991 Aug;419(1):69–75. doi: 10.1007/BF00373749. [DOI] [PubMed] [Google Scholar]
  24. Quast U., Cook N. S. Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol Sci. 1989 Nov;10(11):431–435. doi: 10.1016/S0165-6147(89)80003-3. [DOI] [PubMed] [Google Scholar]
  25. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  26. Strong P. N., Weir S. W., Beech D. J., Hiestand P., Kocher H. P. Effects of potassium channel toxins from Leiurus quinquestriatus hebraeus venom on responses to cromakalim in rabbit blood vessels. Br J Pharmacol. 1989 Nov;98(3):817–826. doi: 10.1111/j.1476-5381.1989.tb14610.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sturgess N. C., Kozlowski R. Z., Carrington C. A., Hales C. N., Ashford M. L. Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol. 1988 Sep;95(1):83–94. doi: 10.1111/j.1476-5381.1988.tb16551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wickenden A. D., Grimwood S., Grant T. L., Todd M. H. Comparison of the effects of the K(+)-channel openers cromakalim and minoxidil sulphate on vascular smooth muscle. Br J Pharmacol. 1991 May;103(1):1148–1152. doi: 10.1111/j.1476-5381.1991.tb12315.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winquist R. J., Heaney L. A., Wallace A. A., Baskin E. P., Stein R. B., Garcia M. L., Kaczorowski G. J. Glyburide blocks the relaxation response to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle. J Pharmacol Exp Ther. 1989 Jan;248(1):149–156. [PubMed] [Google Scholar]
  30. Xiong Z. L., Kajioka S., Sakai T., Kitamura K., Kuriyama H. Pinacidil inhibits the ryanodine-sensitive outward current and glibenclamide antagonizes its action in cells from the rabbit portal vein. Br J Pharmacol. 1991 Apr;102(4):788–790. doi: 10.1111/j.1476-5381.1991.tb12252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES