Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Jul;106(3):739–745. doi: 10.1111/j.1476-5381.1992.tb14403.x

Effect of 17 beta-oestradiol on contraction, Ca2+ current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes.

C Jiang 1, P A Poole-Wilson 1, P M Sarrel 1, S Mochizuki 1, P Collins 1, K T MacLeod 1
PMCID: PMC1907543  PMID: 1504758

Abstract

1. The effect of 17 beta-oestradiol on cardiac cell contraction, inward Ca2+ current and intracellular free Ca2+ ([free Ca2+]i) was investigated in guinea-pig single, isolated ventricular myocytes. The changes of cell length were measured by use of a photodiode array, the voltage-clamp experiments were performed with a switch clamp system and [free Ca2+]i was measured with the Ca2+ indicator, Fura-2. 2. 17 beta-Oestradiol (10, 30 microM) caused a decrease in cell shortening at both 22 and 35 degrees C. This negative inotropic effect was accompanied by a decrease in action potential duration mainly brought about by a shortening of the plateau region of the action potential. 17 beta-Oestradiol (10, 30 microM) induced a similar decrease in cell shortening in voltage-clamped and current-clamped cells. 3. In Fura-2 loaded cells, 17 beta-oestradiol (10 and 30 microM) decreased systolic Fura-2 fluorescence to 72 +/- 7% and 47 +/- 4% (n = 6, P less than 0.001) of control respectively. 17 beta-Oestradiol (10 microM) had no significant effect on diastolic Fura-2 fluorescence, but at higher concentration (30 microM) induced a slight decrease in resting Fura-2 fluorescence. The effect of 17 beta-oestradiol was reversible after 1-2 min of washout of the steroid. 4. 17 beta-Oestradiol (10 and 30 microM) decreased the peak inward Ca2+ current (ICa), which was sensitive to [Ca2+]o, dihydropyridines and isoprenaline, to 59 +/- 3% and 39 +/- 5% (n = 7 approximately 9, P less than 0.01) respectively, without producing any significant change in the shape of the current-voltage relationship.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
739

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B. P. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6388–6392. doi: 10.1073/pnas.81.20.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belles B., Malécot C. O., Hescheler J., Trautwein W. "Run-down" of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflugers Arch. 1988 Apr;411(4):353–360. doi: 10.1007/BF00587713. [DOI] [PubMed] [Google Scholar]
  3. Downing S. J., Hollingsworth M., Miller M. The influence of oestrogen and progesterone on the actions of two calcium entry blockers in the rat uterus. J Endocrinol. 1988 Aug;118(2):251–258. doi: 10.1677/joe.0.1180251. [DOI] [PubMed] [Google Scholar]
  4. Fabiato A. Appraisal of the physiological relevance of two hypothesis for the mechanism of calcium release from the mammalian cardiac sarcoplasmic reticulum: calcium-induced release versus charge-coupled release. Mol Cell Biochem. 1989 Sep 7;89(2):135–140. doi: 10.1007/BF00220765. [DOI] [PubMed] [Google Scholar]
  5. Fabiato A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):291–320. doi: 10.1085/jgp.85.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):247–289. doi: 10.1085/jgp.85.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fedida D., Noble D., Spindler A. J. Use-dependent reduction and facilitation of Ca2+ current in guinea-pig myocytes. J Physiol. 1988 Nov;405:439–460. doi: 10.1113/jphysiol.1988.sp017341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hadley R. W., Hume J. R. An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J Physiol. 1987 Aug;389:205–222. doi: 10.1113/jphysiol.1987.sp016654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kentish J. C., Boyett M. R. A simple electronic circuit for monitoring changes in the duration of the action potential. Pflugers Arch. 1983 Aug;398(3):233–235. doi: 10.1007/BF00657157. [DOI] [PubMed] [Google Scholar]
  10. Lee K. S., Marban E., Tsien R. W. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol. 1985 Jul;364:395–411. doi: 10.1113/jphysiol.1985.sp015752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MacLeod K. T., Harding S. E. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes. J Physiol. 1991 Dec;444:481–498. doi: 10.1113/jphysiol.1991.sp018889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McGill H. C., Jr, Anselmo V. C., Buchanan J. M., Sheridan P. J. The heart is a target organ for androgen. Science. 1980 Feb 15;207(4432):775–777. doi: 10.1126/science.6766222. [DOI] [PubMed] [Google Scholar]
  13. Noble D. The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol. 1984 Aug;353:1–50. doi: 10.1113/jphysiol.1984.sp015320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Raddino R., Manca C., Poli E., Bolognesi R., Visioli O. Effects of 17 beta-estradiol on the isolated rabbit heart. Arch Int Pharmacodyn Ther. 1986 May;281(1):57–65. [PubMed] [Google Scholar]
  15. Roe M. W., Lemasters J. J., Herman B. Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium. 1990 Feb-Mar;11(2-3):63–73. doi: 10.1016/0143-4160(90)90060-8. [DOI] [PubMed] [Google Scholar]
  16. Salata J. J., Wasserstrom J. A. Effects of quinidine on action potentials and ionic currents in isolated canine ventricular myocytes. Circ Res. 1988 Feb;62(2):324–337. doi: 10.1161/01.res.62.2.324. [DOI] [PubMed] [Google Scholar]
  17. Sanguinetti M. C., Kass R. S. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res. 1984 Sep;55(3):336–348. doi: 10.1161/01.res.55.3.336. [DOI] [PubMed] [Google Scholar]
  18. Stice S. L., Ford S. P., Rosazza J. P., Van Orden D. E. Interaction of 4-hydroxylated estradiol and potential-sensitive Ca2+ channels in altering uterine blood flow during the estrous cycle and early pregnancy in gilts. Biol Reprod. 1987 Mar;36(2):369–375. doi: 10.1095/biolreprod36.2.369. [DOI] [PubMed] [Google Scholar]
  19. Stice S. L., Ford S. P., Rosazza J. P., Van Orden D. E. Role of 4-hydroxylated estradiol in reducing Ca2+ uptake of uterine arterial smooth muscle cells through potential-sensitive channels. Biol Reprod. 1987 Mar;36(2):361–368. doi: 10.1095/biolreprod36.2.361. [DOI] [PubMed] [Google Scholar]
  20. Stumpf W. E., Sar M., Aumüller G. The heart: a target organ for estradiol. Science. 1977 Apr 15;196(4287):319–321. doi: 10.1126/science.847474. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES