Abstract
1. Single channel currents activated by 250 nM acetylcholine were recorded from cell-attached patches of BC3H1 mouse tumour cells grown in culture. Channels were recorded in the absence and presence of alphaxalone, diazepam, etomidate, fentanyl, ketamine, meperidine, or propofol. 2. All of the anaesthetics tested shortened channel open time but did not alter single channel current amplitude. Drug concentrations calculated to reduce the time constant of open-time distributions by 50% were 99 microM alphaxalone, 66 microM diazepam, 57 microM etomidate, 26 microM fentanyl, 15 microM ketamine, 16 microM meperidine, or 81 microM propofol. 3. Ketamine, meperidine, and propofol reduced channel open time at concentrations comparable to plasma levels attained during therapeutic use of these agents, while alphaxalone, diazepam, etomidate, and fentanyl reduced channel open time only at levels higher than those encountered clinically. 4. The potency of these drugs in decreasing channel open time appears to be directly correlated with their octanol/buffer partition coefficients. In contrast to expectations, however, agents with higher partition coefficients were less potent in altering channel open time. 5. Ketamine and meperidine produced a prominent third component in closed-time distributions, which were otherwise well described by the sum of two exponential components. Alphaxalone, diazepam, and etomidate also produced a small third component, while no additional component was seen with propofol or fentanyl. These additional components probably arise from creation of an additional closed state of the channel. 6. We conclude that these agents are not altering channel properties merely by exerting non-specific effects via the lipid bilayer and that they are probably not all acting by similar mechanisms.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. R. Drug blockade of open end-plate channels. J Physiol. 1976 Sep;260(3):531–552. doi: 10.1113/jphysiol.1976.sp011530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockshott I. D. Propofol ('Diprivan') pharmacokinetics and metabolism--an overview. Postgrad Med J. 1985;61 (Suppl 3):45–50. [PubMed] [Google Scholar]
- Gage P. W., Hamill O. P. Effects of several inhalation anaesthetics on the kinetics of postsynaptic conductance changes in mouse diaphragm. Br J Pharmacol. 1976 Jun;57(2):263–272. doi: 10.1111/j.1476-5381.1976.tb07476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage P. W., McBurney R. N., Van Helden D. Octanol reduces end-plate channel lifetime. J Physiol. 1978 Jan;274:279–298. doi: 10.1113/jphysiol.1978.sp012147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage P. W., McKinnon D. Effects of pentobarbitone on acetylcholine-activated channels in mammalian muscle. Br J Pharmacol. 1985 May;85(1):229–235. doi: 10.1111/j.1476-5381.1985.tb08851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heykants J. J., Meuldermans W. E., Michiels L. J., Lewi P. J., Janssen P. A. Distribution, metabolism and excretion of etomidate, a short-acting hypnotic drug, in the rat. Comparative study of (R)-(+)-(--)-Etomidate. Arch Int Pharmacodyn Ther. 1975 Jul;216(1):113–129. [PubMed] [Google Scholar]
- Hillestad L., Hansen T., Melsom H., Drivenes A. Diazepam metabolism in normal man. I. Serum concentrations and clinical effects after intravenous, intramuscular, and oral administration. Clin Pharmacol Ther. 1974 Sep;16(3):479–484. [PubMed] [Google Scholar]
- James R., Glen J. B. Synthesis, biological evaluation, and preliminary structure-activity considerations of a series of alkylphenols as intravenous anesthetic agents. J Med Chem. 1980 Dec;23(12):1350–1357. doi: 10.1021/jm00186a013. [DOI] [PubMed] [Google Scholar]
- Johnston R. R., Miller R. D., Way W. L. The interaction of ketamine with d-tubocurarine, pancuronium, and succinylcholine in man. Anesth Analg. 1974 Jul-Aug;53(4):496–501. [PubMed] [Google Scholar]
- Kirkpatrick T., Cockshott I. D., Douglas E. J., Nimmo W. S. Pharmacokinetics of propofol (diprivan) in elderly patients. Br J Anaesth. 1988 Feb;60(2):146–150. doi: 10.1093/bja/60.2.146. [DOI] [PubMed] [Google Scholar]
- Lechleiter J., Gruener R. Halothane shortens acetylcholine receptor channel kinetics without affecting conductance. Proc Natl Acad Sci U S A. 1984 May;81(9):2929–2933. doi: 10.1073/pnas.81.9.2929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mather L. E., Tucker G. T., Pflug A. E., Lindop M. J., Wilkerson C. Meperidine kinetics in man. Intravenous injection in surgical patients and volunteers. Clin Pharmacol Ther. 1975 Jan;17(1):21–30. doi: 10.1002/cpt197517121. [DOI] [PubMed] [Google Scholar]
- Munson R., Jr, Caldwell K. L., Glaser L. Multiple controls for the synthesis of muscle-specific proteins in BC3H1 cells. J Cell Biol. 1982 Feb;92(2):350–356. doi: 10.1083/jcb.92.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murrell R. D., Braun M. S., Haydon D. A. Actions of n-alcohols on nicotinic acetylcholine receptor channels in cultured rat myotubes. J Physiol. 1991 Jun;437:431–448. doi: 10.1113/jphysiol.1991.sp018604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson E. N., Glaser L., Merlie J. P., Sebanne R., Lindstrom J. Regulation of surface expression of acetylcholine receptors in response to serum and cell growth in the BC3H1 muscle cell line. J Biol Chem. 1983 Nov 25;258(22):13946–13953. [PubMed] [Google Scholar]
- Reidenberg M. M., Levy M., Warner H., Coutinho C. B., Schwartz M. A., Yu G., Cheripko J. Relationship between diazepam dose, plasma level, age, and central nervous system depression. Clin Pharmacol Ther. 1978 Apr;23(4):371–374. doi: 10.1002/cpt1978234371. [DOI] [PubMed] [Google Scholar]
- Schüttler J., Stoeckel H., Schwilden H. Pharmacokinetic and pharmacodynamic modelling of propofol ('Diprivan') in volunteers and surgical patients. Postgrad Med J. 1985;61 (Suppl 3):53–54. [PubMed] [Google Scholar]
- Schüttler J., Wilms M., Lauven P. M., Stoeckel H., Koenig A. Pharmakokinetische Untersuchungen über Etomidat beim Menschen. Anaesthesist. 1980 Dec;29(12):658–661. [PubMed] [Google Scholar]
- Sear J. W., Prys-Roberts C. Plasma concentrations of alphaxalone during continuous infusion of Althesin. Br J Anaesth. 1979 Sep;51(9):861–865. doi: 10.1093/bja/51.9.861. [DOI] [PubMed] [Google Scholar]
- Shafer A., Doze V. A., Shafer S. L., White P. F. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology. 1988 Sep;69(3):348–356. doi: 10.1097/00000542-198809000-00011. [DOI] [PubMed] [Google Scholar]
- Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sine S. M., Steinbach J. H. Activation of a nicotinic acetylcholine receptor. Biophys J. 1984 Jan;45(1):175–185. doi: 10.1016/S0006-3495(84)84146-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sine S. M., Steinbach J. H. Activation of acetylcholine receptors on clonal mammalian BC3H-1 cells by low concentrations of agonist. J Physiol. 1986 Apr;373:129–162. doi: 10.1113/jphysiol.1986.sp016039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torda T. A., Gage P. W. Postsynaptic effect of i.v. anaesthetic agents at the neuromuscular junction. Br J Anaesth. 1977 Aug;49(8):771–776. doi: 10.1093/bja/49.8.771. [DOI] [PubMed] [Google Scholar]
- Van Hamme M. J., Ghoneim M. M., Ambre J. J. Pharmacokinetics of etomidate, a new intravenous anesthetic. Anesthesiology. 1978 Oct;49(4):274–277. doi: 10.1097/00000542-197810000-00010. [DOI] [PubMed] [Google Scholar]
- Wachtel R. E. Comparison of anticholinesterases and their effects on acetylcholine-activated ion channels. Anesthesiology. 1990 Mar;72(3):496–503. doi: 10.1097/00000542-199003000-00018. [DOI] [PubMed] [Google Scholar]
- Wachtel R. E. Ketamine decreases the open time of single-channel currents activated by acetylcholine. Anesthesiology. 1988 Apr;68(4):563–570. doi: 10.1097/00000542-198804000-00015. [DOI] [PubMed] [Google Scholar]
- Wachtel R. E. Use of BMDP statistical package to generate maximum liklihood estimates for single channel data. J Neurosci Methods. 1988 Sep;25(2):121–128. doi: 10.1016/0165-0270(88)90148-3. [DOI] [PubMed] [Google Scholar]
- Wachtel R. E., Wegrzynowicz E. S. Mechanism of volatile anesthetic action on ion channels. Ann N Y Acad Sci. 1991;625:116–128. doi: 10.1111/j.1749-6632.1991.tb33835.x. [DOI] [PubMed] [Google Scholar]
- Wieber J., Gugler R., Hengstmann J. H., Dengler H. J. Pharmacokinetics of ketamine in man. Anaesthesist. 1975 Jun;24(6):260–263. [PubMed] [Google Scholar]
- de Ruiter G., Popescu D. T., de Boer A. G., Smeekens J. B., Breimer D. D. Pharmacokinetics of etomidate in surgical patients. Arch Int Pharmacodyn Ther. 1981 Feb;249(2):180–188. [PubMed] [Google Scholar]