Abstract
1. The effects of heptaminol on calcium current amplitude and characteristics were studied in single ventricular myocytes of guinea-pig by use of the whole cell configuration of the patch clamp technique. 2. A concentration-dependent decrease in ICa amplitude was observed. At heptaminol concentration as low as 10(-6) M, this effect was observed in only two cells (n = 6). At 10(-5) M the reduction of ICa was of 30 +/- 15% (n = 11). 3. The current recovery from inactivation at -40 mV holding potential (HP) seemed less sensitive to perfusion with heptaminol (greater than 10(-6) M). However, at -80 mV HP the overshoot of the recovery curve was decreased by heptaminol. 4. Both at -40 mV and -80 mV HP, heptaminol (10(-5) M) significantly increased the steady state inactivation of ICa. 5. As previously proposed by others to explain the effects of membrane active substances, the effects of heptaminol may result from alterations in cell membrane properties and possibly from an increase in intracellular free calcium ion concentration.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allard B., Jacquemond V., Lemtiri-Chlieh F., Pourrias B., Rougier O. Action of heptaminol hydrochloride on contractile properties in frog isolated twitch muscle fibre. Br J Pharmacol. 1991 Nov;104(3):714–718. doi: 10.1111/j.1476-5381.1991.tb12493.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Argibay J. A., Fischmeister R., Hartzell H. C. Inactivation, reactivation and pacing dependence of calcium current in frog cardiocytes: correlation with current density. J Physiol. 1988 Jul;401:201–226. doi: 10.1113/jphysiol.1988.sp017158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belles B., Malécot C. O., Hescheler J., Trautwein W. "Run-down" of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflugers Arch. 1988 Apr;411(4):353–360. doi: 10.1007/BF00587713. [DOI] [PubMed] [Google Scholar]
- Berthiau F., Garnier D., Argibay J. A., Seguin F., Pourrias B., Grivet J. P., Le Pape A. Decrease in internal H+ and positive inotropic effect of heptaminol hydrochloride: a 31P n.m.r. spectroscopy study in rat isolated heart. Br J Pharmacol. 1989 Dec;98(4):1233–1240. doi: 10.1111/j.1476-5381.1989.tb12669.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CORABOEUF E., BOISTEL J. Etude à l'aide de microélectrodes intracellulaires de l'action d'un tonicardiaque: l'amino.6-methyl.2-heptanol.2 (2831 R.P) sur le tissu nodal du coeur de chien. C R Seances Soc Biol Fil. 1953 May;147(9-10):774–779. [PubMed] [Google Scholar]
- Chatelain P., Robberecht P., Waelbroeck M., Camus J. C., Christophe J. Modulation by n-alkanols of rat cardiac adenylate cyclase activity. J Membr Biol. 1986;93(1):23–32. doi: 10.1007/BF01871015. [DOI] [PubMed] [Google Scholar]
- Daniell L. C., Harris R. A. Neuronal intracellular calcium concentrations are altered by anesthetics: relationship to membrane fluidization. J Pharmacol Exp Ther. 1988 Apr;245(1):1–7. [PubMed] [Google Scholar]
- Davidson M., Wilce P., Shanley B. Ethanol and synaptosomal calcium homeostasis. Biochem Pharmacol. 1990 Apr 15;39(8):1283–1288. doi: 10.1016/0006-2952(90)90004-5. [DOI] [PubMed] [Google Scholar]
- GARRETT J., OSSWALD W., GONCALVES MOREIRA M. Mechanism of cardiovascular actions of heptanolamines. Br J Pharmacol Chemother. 1962 Feb;18:49–60. doi: 10.1111/j.1476-5381.1962.tb01149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurney A. M., Charnet P., Pye J. M., Nargeot J. Augmentation of cardiac calcium current by flash photolysis of intracellular caged-Ca2+ molecules. Nature. 1989 Sep 7;341(6237):65–68. doi: 10.1038/341065a0. [DOI] [PubMed] [Google Scholar]
- Haworth R. A., Goknur A. B., Berkoff H. A. Inhibition of Na-Ca exchange by general anesthetics. Circ Res. 1989 Oct;65(4):1021–1028. doi: 10.1161/01.res.65.4.1021. [DOI] [PubMed] [Google Scholar]
- Haydon D. A., Urban B. W. The action of alcohols and other non-ionic surface active substances on the sodium current of the squid giant axon. J Physiol. 1983 Aug;341:411–427. doi: 10.1113/jphysiol.1983.sp014813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haydon D. A., Urban B. W. The effects of some inhalation anaesthetics on the sodium current of the squid giant axon. J Physiol. 1983 Aug;341:429–439. doi: 10.1113/jphysiol.1983.sp014814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
- Hirota K., Ito Y., Momose Y. Effects of halothane on membrane potentials and membrane ionic currents in single bullfrog atrial cells. Acta Anaesthesiol Scand. 1988 May;32(4):333–338. doi: 10.1111/j.1399-6576.1988.tb02739.x. [DOI] [PubMed] [Google Scholar]
- Ikemoto Y., Yatani A., Arimura H., Yoshitake J. Reduction of the slow inward current of isolated rat ventricular cells by thiamylal and halothane. Acta Anaesthesiol Scand. 1985 Aug;29(6):583–586. doi: 10.1111/j.1399-6576.1985.tb02258.x. [DOI] [PubMed] [Google Scholar]
- Kurachi Y. The effects of intracellular protons on the electrical activity of single ventricular cells. Pflugers Arch. 1982 Sep;394(3):264–270. doi: 10.1007/BF00589102. [DOI] [PubMed] [Google Scholar]
- LOUBATIERES A. Propriétés cardiotoniques d'un amino-alcool aliphatique, l'amino.6-méthyl.2-heptanol.2 (2831 R.P). Arch Int Pharmacodyn Ther. 1951 Feb;85(3-4):333–356. [PubMed] [Google Scholar]
- Le Guennec J. Y., Peineau N., Argibay J. A., Mongo K. G., Garnier D. A new method of attachment of isolated mammalian ventricular myocytes for tension recording: length dependence of passive and active tension. J Mol Cell Cardiol. 1990 Oct;22(10):1083–1093. doi: 10.1016/0022-2828(90)90072-a. [DOI] [PubMed] [Google Scholar]
- Lipp P., Pott L. Effects of intracellular Ca2+ chelating compounds on inward currents caused by Ca2+ release from sarcoplasmic reticulum in guinea-pig atrial myocytes. Pflugers Arch. 1991 Oct;419(3-4):296–303. doi: 10.1007/BF00371110. [DOI] [PubMed] [Google Scholar]
- McDonald T., Pelzer D., Trautwein W. Dual action (stimulation, inhibition) of D600 on contractility and calcium channels in guinea-pig and cat heart cells. J Physiol. 1989 Jul;414:569–586. doi: 10.1113/jphysiol.1989.sp017704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mentrard D., Vassort G., Fischmeister R. Calcium-mediated inactivation of the calcium conductance in cesium-loaded frog heart cells. J Gen Physiol. 1984 Jan;83(1):105–131. doi: 10.1085/jgp.83.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michaelis M. L., Michaelis E. K. Alcohol and local anesthetic effects on Na+-dependent Ca2+ fluxes in brain synaptic membrane vesicles. Biochem Pharmacol. 1983 Mar 15;32(6):963–969. doi: 10.1016/0006-2952(83)90612-3. [DOI] [PubMed] [Google Scholar]
- Mongo K. G., Vassort G. Inhibition by alcohols, halothane and chloroform of the Ca current in single frog ventricular cells. J Mol Cell Cardiol. 1990 Sep;22(9):939–953. doi: 10.1016/0022-2828(90)91034-5. [DOI] [PubMed] [Google Scholar]
- Murrell R. D., Braun M. S., Haydon D. A. Actions of n-alcohols on nicotinic acetylcholine receptor channels in cultured rat myotubes. J Physiol. 1991 Jun;437:431–448. doi: 10.1113/jphysiol.1991.sp018604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mészàros J., Pappano A. J. Electrophysiological effects of L-palmitoylcarnitine in single ventricular myocytes. Am J Physiol. 1990 Apr;258(4 Pt 2):H931–H938. doi: 10.1152/ajpheart.1990.258.4.H931. [DOI] [PubMed] [Google Scholar]
- Ohnishi S. T., Flick J. L., Rubin E. Ethanol increases calcium permeability of heavy sarcoplasmic reticulum of skeletal muscle. Arch Biochem Biophys. 1984 Sep;233(2):588–594. doi: 10.1016/0003-9861(84)90483-1. [DOI] [PubMed] [Google Scholar]
- Philipson K. D. Interaction of charged amphiphiles with Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. J Biol Chem. 1984 Nov 25;259(22):13999–14002. [PubMed] [Google Scholar]
- Richards C. D., Martin K., Gregory S., Keightley C. A., Hesketh T. R., Smith G. A., Warren G. B., Metcalfe J. C. Degenerate perturbations of protein structure as the mechanism of anaesthetic action. Nature. 1978 Dec 21;276(5690):775–779. doi: 10.1038/276775a0. [DOI] [PubMed] [Google Scholar]
- Rusy B. F., Komai H. Anesthetic depression of myocardial contractility: a review of possible mechanisms. Anesthesiology. 1987 Nov;67(5):745–766. doi: 10.1097/00000542-198711000-00020. [DOI] [PubMed] [Google Scholar]
- Salama G., Scarpa A. Mode of action of diethyl ether on ATP-dependent Ca2+ transport by sarcoplasmic reticulum vesicles. Biochem Pharmacol. 1983 Nov 15;32(22):3465–3477. doi: 10.1016/0006-2952(83)90378-7. [DOI] [PubMed] [Google Scholar]
- Schouten V. J., Morad M. Regulation of Ca2+ current in frog ventricular myocytes by the holding potential, c-AMP and frequency. Pflugers Arch. 1989 Oct;415(1):1–11. doi: 10.1007/BF00373135. [DOI] [PubMed] [Google Scholar]
- Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
- Swann A. C. Ethanol and (Na+,K+)-ATPase: alteration of Na(+)-K+ selectivity. Alcohol Clin Exp Res. 1990 Dec;14(6):922–927. doi: 10.1111/j.1530-0277.1990.tb01839.x. [DOI] [PubMed] [Google Scholar]
- Sánchez-Chapula J. Effects of bupivacaine on membrane currents of guinea-pig ventricular myocytes. Eur J Pharmacol. 1988 Nov 8;156(3):303–308. doi: 10.1016/0014-2999(88)90274-9. [DOI] [PubMed] [Google Scholar]
- Tas P. W., Kress H. G., Koschel K. Lipid solubility is not the sole criterion for the inhibition of a Ca2(+)-activated K+ channel by alcohols. Biochim Biophys Acta. 1990 Apr 30;1023(3):436–440. doi: 10.1016/0005-2736(90)90136-c. [DOI] [PubMed] [Google Scholar]
- Terrar D. A., Victory J. G. Effects of halothane on membrane currents associated with contraction in single myocytes isolated from guinea-pig ventricle. Br J Pharmacol. 1988 Jun;94(2):500–508. doi: 10.1111/j.1476-5381.1988.tb11553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Treistman S. N., Wilson A. Alkanol effects on early potassium currents in Aplysia neurons depend on chain length. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9299–9303. doi: 10.1073/pnas.84.24.9299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tseng G. N. Calcium current restitution in mammalian ventricular myocytes is modulated by intracellular calcium. Circ Res. 1988 Aug;63(2):468–482. doi: 10.1161/01.res.63.2.468. [DOI] [PubMed] [Google Scholar]
- Vassort G., Whittembury J., Mullins L. J. Increases in internal Ca2+ and decreases in internal H+ are induced by general anesthetics in squid axons. Biophys J. 1986 Jul;50(1):11–19. doi: 10.1016/S0006-3495(86)83434-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
