Abstract
1. The present study compared the cyclic nucleotide phosphodiesterase (PDE) activities in cardiomyocytes and ventricular cardiac tissue from guinea-pigs. The aim of the study was to determine whether PDE activities in ventricular tissue accurately reflect the isoenzymes present in cardiomyocytes. 2. In homogenates of cardiomyocytes and multicellular ventricular tissue, four distinct soluble PDE activities could be separated by DEAE-sepharose chromatography. 3. In multicellular cardiac tissue as well as in cardiomyocyte preparations, adenosine 3':5'-cyclic monophosphate (cyclic AMP) PDE isoenzymes I-IV were comparable in terms of substrate affinities, and inhibition or stimulation by guanosine 3':5'-cyclic monophosphate (cyclic GMP). However, in cardiomyocytes the Vmax values of PDE I-IV were lower by a factor of about 2 to 7 and the basal activities were lower by a factor of about 3 to 5 as compared to multicellular cardiac tissue. 4. To investigate whether the PDE I-IV activities were similarly inhibited by PDE inhibitors in both preparations, we studied the effects of 3-isobutyl-1-methylxanthine (IBMX), UD-CG 212 Cl (2-(4-hydroxy-phenyl)-5-(5-methyl-3-oxo-4, 5-dihydro-2H-6-pyridazinyl)benzimidazole HCl) and rolipram. UD-CG 212 Cl was a selective PDE III inhibitor in cardiomyocytes (IC50 0.3 mumol l-1) and in ventricular tissue (IC50 value 0.1 mumol l-1). Rolipram selectively inhibited PDE IV in cardiomyocytes (IC50 1.4 mumol ml-1) and in ventricular tissue (IC50 1.1 mumol l-1) whereas IBMX was a nonselective PDE inhibitor in both preparations.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer A. C., Schwabe U. An improved assay of cyclic 3',5'-nucleotide phosphodiesterases with QAE-Sephadex columns. Naunyn Schmiedebergs Arch Pharmacol. 1980 Mar;311(2):193–198. doi: 10.1007/BF00510259. [DOI] [PubMed] [Google Scholar]
- Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
- Behnke N., Müller W., Neumann J., Schmitz W., Scholz H., Stein B. Differential antagonism by 1,3-dipropylxanthine-8-cyclopentylxanthine and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo(1,5-c)quinazolin-5-im ine of the effects of adenosine derivatives in the presence of isoprenaline on contractile response and cyclic AMP content in cardiomyocytes. Evidence for the coexistence of A1- and A2-adenosine receptors on cardiomyocytes. J Pharmacol Exp Ther. 1990 Sep;254(3):1017–1023. [PubMed] [Google Scholar]
- Bethke T., Brunkhorst D., von der Leyen H., Meyer W., Nigbur R., Scholz H. Mechanism of action and cardiotonic activity of a new phosphodiesterase inhibitor, the benzimidazole derivative adibendan (BM 14.478), in guinea-pig hearts. Naunyn Schmiedebergs Arch Pharmacol. 1988 May;337(5):576–582. doi: 10.1007/BF00182735. [DOI] [PubMed] [Google Scholar]
- Bethke T., Eschenhagen T., Klimkiewicz A., Kohl C., von der Leyen H., Mehl H., Mende U., Meyer W., Neumann J., Rosswag S. Phosphodiesterase inhibition by enoximone in preparations from nonfailing and failing human hearts. Arzneimittelforschung. 1992 Apr;42(4):437–445. [PubMed] [Google Scholar]
- Bethke T., Klimkiewicz A., Kohl C., von der Leyen H., Mehl H., Mende U., Meyer W., Neumann J., Schmitz W., Scholz H. Effects of isomazole on force of contraction and phosphodiesterase isoenzymes I-IV in nonfailing and failing human hearts. J Cardiovasc Pharmacol. 1991 Sep;18(3):386–397. doi: 10.1097/00005344-199109000-00012. [DOI] [PubMed] [Google Scholar]
- Bethke T., Mehl H., Meyer W., Schmitz W., Scholz H., Thomas K., Wenzlaff H. Effects of the triazolopyrimidine trapidil on force of contraction, beating frequency and phosphodiesterase I--IV activity in guinea-pig hearts. Arzneimittelforschung. 1991 May;41(5):461–468. [PubMed] [Google Scholar]
- Bode D. C., Kanter J. R., Brunton L. L. Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue. Circ Res. 1991 Apr;68(4):1070–1079. doi: 10.1161/01.res.68.4.1070. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brunkhorst D., v der Leyen H., Meyer W., Nigbur R., Schmidt-Schumacher C., Scholz H. Relation of positive inotropic and chronotropic effects of pimobendan, UD-CG 212 Cl, milrinone and other phosphodiesterase inhibitors to phosphodiesterase III inhibition in guinea-pig heart. Naunyn Schmiedebergs Arch Pharmacol. 1989 May;339(5):575–583. doi: 10.1007/BF00167264. [DOI] [PubMed] [Google Scholar]
- Brunkhorst D., von der Leyen H., Meyer W., Schmidt-Schumacher C., Scholz H. Selective inhibition of cAMP phosphodiesterase III activity by the cardiotonic agent saterinone in guinea pig myocardium. Arzneimittelforschung. 1988 Sep;38(9):1293–1298. [PubMed] [Google Scholar]
- Colucci W. S., Wright R. F., Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. 2. N Engl J Med. 1986 Feb 6;314(6):349–358. doi: 10.1056/NEJM198602063140605. [DOI] [PubMed] [Google Scholar]
- Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch. 1982 Oct;395(1):6–18. doi: 10.1007/BF00584963. [DOI] [PubMed] [Google Scholar]
- Kariya T., Wille L. J., Dage R. C. Biochemical studies on the mechanism of cardiotonic activity of MDL 17,043. J Cardiovasc Pharmacol. 1982 May-Jun;4(3):509–514. doi: 10.1097/00005344-198205000-00024. [DOI] [PubMed] [Google Scholar]
- Neels H. M., van Sande M. E., Scharpé S. L. Sensitive colorimetric assay for angiotensin converting enzyme in serum. Clin Chem. 1983 Jul;29(7):1399–1403. [PubMed] [Google Scholar]
- Reeves M. L., Leigh B. K., England P. J. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J. 1987 Jan 15;241(2):535–541. doi: 10.1042/bj2410535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shahid M., Nicholson C. D. Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium: positive inotropic and phosphodiesterase inhibitory effects of Org 30029, milrinone and rolipram. Naunyn Schmiedebergs Arch Pharmacol. 1990 Dec;342(6):698–705. doi: 10.1007/BF00175715. [DOI] [PubMed] [Google Scholar]
- Silver P. J., Allen P., Etzler J. H., Hamel L. T., Bentley R. G., Pagani E. D. Cellular distribution and pharmacological sensitivity of low Km cyclic nucleotide phosphodiesterase isozymes in human cardiac muscle from normal and cardiomyopathic subjects. Second Messengers Phosphoproteins. 1990;13(1):13–25. [PubMed] [Google Scholar]
- Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
- Weishaar R. E., Burrows S. D., Kobylarz D. C., Quade M. M., Evans D. B. Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Isolation, characterization, and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Biochem Pharmacol. 1986 Mar 1;35(5):787–800. doi: 10.1016/0006-2952(86)90247-9. [DOI] [PubMed] [Google Scholar]
- Weishaar R. E., Kobylarz-Singer D. C., Steffen R. P., Kaplan H. R. Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res. 1987 Oct;61(4):539–547. doi: 10.1161/01.res.61.4.539. [DOI] [PubMed] [Google Scholar]
- Wilmshurst P. T., Walker J. M., Fry C. H., Mounsey J. P., Twort C. H., Williams B. T., Davies M. J., Webb-Peploe M. M. Inotropic and vasodilator effects of amrinone on isolated human tissue. Cardiovasc Res. 1984 May;18(5):302–309. doi: 10.1093/cvr/18.5.302. [DOI] [PubMed] [Google Scholar]
- von der Leyen H., Mende U., Meyer W., Neumann J., Nose M., Schmitz W., Scholz H., Starbatty J., Stein B., Wenzlaff H. Mechanism underlying the reduced positive inotropic effects of the phosphodiesterase III inhibitors pimobendan, adibendan and saterinone in failing as compared to nonfailing human cardiac muscle preparations. Naunyn Schmiedebergs Arch Pharmacol. 1991 Jul;344(1):90–100. doi: 10.1007/BF00167387. [DOI] [PubMed] [Google Scholar]
- von der Leyen H. Phosphodiesterase inhibition by new cardiotonic agents: mechanism of action and possible clinical relevance in the therapy of congestive heart failure. Klin Wochenschr. 1989 Jun 15;67(12):605–615. doi: 10.1007/BF01718141. [DOI] [PubMed] [Google Scholar]
