Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):7132–7142. doi: 10.1128/jvi.70.10.7132-7142.1996

Human immunodeficiency virus type 1 nucleocapsid protein reduces reverse transcriptase pausing at a secondary structure near the murine leukemia virus polypurine tract.

W Wu 1, L E Henderson 1, T D Copeland 1, R J Gorelick 1, W J Bosche 1, A Rein 1, J G Levin 1
PMCID: PMC190766  PMID: 8794360

Abstract

In an earlier study on minus-strand DNA synthesis catalyzed by murine leukemia virus reverse transcriptase, we described a prominent pause site near the polypurine tract (J. Guo, W. Wu, Z. Y. Yuan, K. Post, R. J. Crouch, and J. G . Levin, Biochemistry 34:5018-5029, 1995). We now report that pausing at this site is due to a stem-loop structure in the RNA template, formed by interaction of a number of bases in the polypurine tract, including the six G's, and a 3' sequence which includes four C's. Addition of human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein to reverse transcriptase reactions reduces pausing by approximately 8- to 10-fold and stimulates synthesis of full-length DNA. Thus, NC functions as an accessory protein during elongation of minus-strand DNA and increases the efficiency of DNA synthesis, in this case, by apparently destabilizing a region of secondary structure in the template. Since NC is associated with genomic RNA in the viral core and is likely to be part of a viral replication complex, these results suggest that NC may also promote efficient DNA synthesis during virus replication. Mutational analysis indicates that the features of HIV-1 NC which are important for reduction of pausing include the basic amino acids flanking the first zinc finger, the zinc fingers, and the cysteine and aromatic amino acids within the fingers. These findings suggest that reverse transcription might be targeted by drugs which inactivate the zinc fingers of HIV-1 NC.

Full Text

The Full Text of this article is available as a PDF (489.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldovini A., Young R. A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol. 1990 May;64(5):1920–1926. doi: 10.1128/jvi.64.5.1920-1926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allain B., Lapadat-Tapolsky M., Berlioz C., Darlix J. L. Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J. 1994 Feb 15;13(4):973–981. doi: 10.1002/j.1460-2075.1994.tb06342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arts E.J., Li Z., Wainberg M.A. Analysis of Primer Extension and the First Template Switch during Human Immunodeficiency Virus Reverse Transcription. J Biomed Sci. 1995 Oct;2(4):314–321. doi: 10.1007/BF02255218. [DOI] [PubMed] [Google Scholar]
  4. Berg J. M. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986 Apr 25;232(4749):485–487. doi: 10.1126/science.2421409. [DOI] [PubMed] [Google Scholar]
  5. Berkowitz R. D., Luban J., Goff S. P. Specific binding of human immunodeficiency virus type 1 gag polyprotein and nucleocapsid protein to viral RNAs detected by RNA mobility shift assays. J Virol. 1993 Dec;67(12):7190–7200. doi: 10.1128/jvi.67.12.7190-7200.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berkowitz R. D., Ohagen A., Höglund S., Goff S. P. Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J Virol. 1995 Oct;69(10):6445–6456. doi: 10.1128/jvi.69.10.6445-6456.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bertrand E. L., Rossi J. J. Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-1 and the heterogeneous nuclear ribonucleoprotein A1. EMBO J. 1994 Jun 15;13(12):2904–2912. doi: 10.1002/j.1460-2075.1994.tb06585.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bess J. W., Jr, Powell P. J., Issaq H. J., Schumack L. J., Grimes M. K., Henderson L. E., Arthur L. O. Tightly bound zinc in human immunodeficiency virus type 1, human T-cell leukemia virus type I, and other retroviruses. J Virol. 1992 Feb;66(2):840–847. doi: 10.1128/jvi.66.2.840-847.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chance M. R., Sagi I., Wirt M. D., Frisbie S. M., Scheuring E., Chen E., Bess J. W., Jr, Henderson L. E., Arthur L. O., South T. L. Extended x-ray absorption fine structure studies of a retrovirus: equine infectious anemia virus cysteine arrays are coordinated to zinc. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10041–10045. doi: 10.1073/pnas.89.21.10041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen M., Garon C. F., Papas T. S. Native ribonucleoprotein is an efficient transcriptional complex of avian myeloblastosis virus. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1296–1300. doi: 10.1073/pnas.77.3.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cirino N. M., Cameron C. E., Smith J. S., Rausch J. W., Roth M. J., Benkovic S. J., Le Grice S. F. Divalent cation modulation of the ribonuclease functions of human immunodeficiency virus reverse transcriptase. Biochemistry. 1995 Aug 8;34(31):9936–9943. doi: 10.1021/bi00031a016. [DOI] [PubMed] [Google Scholar]
  12. Clever J., Sassetti C., Parslow T. G. RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1. J Virol. 1995 Apr;69(4):2101–2109. doi: 10.1128/jvi.69.4.2101-2109.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Covey S. N. Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res. 1986 Jan 24;14(2):623–633. doi: 10.1093/nar/14.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dannull J., Surovoy A., Jung G., Moelling K. Specific binding of HIV-1 nucleocapsid protein to PSI RNA in vitro requires N-terminal zinc finger and flanking basic amino acid residues. EMBO J. 1994 Apr 1;13(7):1525–1533. doi: 10.1002/j.1460-2075.1994.tb06414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Darlix J. L., Gabus C., Nugeyre M. T., Clavel F., Barré-Sinoussi F. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J Mol Biol. 1990 Dec 5;216(3):689–699. doi: 10.1016/0022-2836(90)90392-Y. [DOI] [PubMed] [Google Scholar]
  16. Darlix J. L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995 Dec 8;254(4):523–537. doi: 10.1006/jmbi.1995.0635. [DOI] [PubMed] [Google Scholar]
  17. De Rocquigny H., Gabus C., Vincent A., Fournié-Zaluski M. C., Roques B., Darlix J. L. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6472–6476. doi: 10.1073/pnas.89.14.6472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. DeStefano J. J., Buiser R. G., Mallaber L. M., Fay P. J., Bambara R. A. Parameters that influence processive synthesis and site-specific termination by human immunodeficiency virus reverse transcriptase on RNA and DNA templates. Biochim Biophys Acta. 1992 Jul 15;1131(3):270–280. doi: 10.1016/0167-4781(92)90025-u. [DOI] [PubMed] [Google Scholar]
  19. DeStefano J. J. Human immunodeficiency virus nucleocapsid protein stimulates strand transfer from internal regions of heteropolymeric RNA templates. Arch Virol. 1995;140(10):1775–1789. doi: 10.1007/BF01384341. [DOI] [PubMed] [Google Scholar]
  20. Dib-Hajj F., Khan R., Giedroc D. P. Retroviral nucleocapsid proteins possess potent nucleic acid strand renaturation activity. Protein Sci. 1993 Feb;2(2):231–243. doi: 10.1002/pro.5560020212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dorfman T., Luban J., Goff S. P., Haseltine W. A., Göttlinger H. G. Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol. 1993 Oct;67(10):6159–6169. doi: 10.1128/jvi.67.10.6159-6169.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Dupraz P., Oertle S., Meric C., Damay P., Spahr P. F. Point mutations in the proximal Cys-His box of Rous sarcoma virus nucleocapsid protein. J Virol. 1990 Oct;64(10):4978–4987. doi: 10.1128/jvi.64.10.4978-4987.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dupraz P., Spahr P. F. Specificity of Rous sarcoma virus nucleocapsid protein in genomic RNA packaging. J Virol. 1992 Aug;66(8):4662–4670. doi: 10.1128/jvi.66.8.4662-4670.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Feng Y. X., Copeland T. D., Henderson L. E., Gorelick R. J., Bosche W. J., Levin J. G., Rein A. HIV-1 nucleocapsid protein induces "maturation" of dimeric retroviral RNA in vitro. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7577–7581. doi: 10.1073/pnas.93.15.7577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fleissner E., Tress E. Isolation of a ribonucleoprotein structure from oncornaviruses. J Virol. 1973 Dec;12(6):1612–1615. doi: 10.1128/jvi.12.6.1612-1615.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Fu W., Gorelick R. J., Rein A. Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions. J Virol. 1994 Aug;68(8):5013–5018. doi: 10.1128/jvi.68.8.5013-5018.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fu W., Rein A. Maturation of dimeric viral RNA of Moloney murine leukemia virus. J Virol. 1993 Sep;67(9):5443–5449. doi: 10.1128/jvi.67.9.5443-5449.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Furfine E. S., Reardon J. E. Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J Biol Chem. 1991 Jan 5;266(1):406–412. [PubMed] [Google Scholar]
  29. Gopalakrishnan V., Peliska J. A., Benkovic S. J. Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10763–10767. doi: 10.1073/pnas.89.22.10763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gorelick R. J., Chabot D. J., Ott D. E., Gagliardi T. D., Rein A., Henderson L. E., Arthur L. O. Genetic analysis of the zinc finger in the Moloney murine leukemia virus nucleocapsid domain: replacement of zinc-coordinating residues with other zinc-coordinating residues yields noninfectious particles containing genomic RNA. J Virol. 1996 Apr;70(4):2593–2597. doi: 10.1128/jvi.70.4.2593-2597.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gorelick R. J., Chabot D. J., Rein A., Henderson L. E., Arthur L. O. The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid protein are not functionally equivalent. J Virol. 1993 Jul;67(7):4027–4036. doi: 10.1128/jvi.67.7.4027-4036.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gorelick R. J., Henderson L. E., Hanser J. P., Rein A. Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a "zinc finger-like" protein sequence. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8420–8424. doi: 10.1073/pnas.85.22.8420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Gorelick R. J., Nigida S. M., Jr, Bess J. W., Jr, Arthur L. O., Henderson L. E., Rein A. Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. J Virol. 1990 Jul;64(7):3207–3211. doi: 10.1128/jvi.64.7.3207-3211.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Guo J., Wu W., Yuan Z. Y., Post K., Crouch R. J., Levin J. G. Defects in primer-template binding, processive DNA synthesis, and RNase H activity associated with chimeric reverse transcriptases having the murine leukemia virus polymerase domain joined to Escherichia coli RNase H. Biochemistry. 1995 Apr 18;34(15):5018–5029. doi: 10.1021/bi00015a013. [DOI] [PubMed] [Google Scholar]
  35. Henderson L. E., Bowers M. A., Sowder R. C., 2nd, Serabyn S. A., Johnson D. G., Bess J. W., Jr, Arthur L. O., Bryant D. K., Fenselau C. Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1: posttranslational modifications, proteolytic processings, and complete amino acid sequences. J Virol. 1992 Apr;66(4):1856–1865. doi: 10.1128/jvi.66.4.1856-1865.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Henderson L. E., Copeland T. D., Sowder R. C., Smythers G. W., Oroszlan S. Primary structure of the low molecular weight nucleic acid-binding proteins of murine leukemia viruses. J Biol Chem. 1981 Aug 25;256(16):8400–8406. [PubMed] [Google Scholar]
  37. Herr W. Nucleotide sequence of AKV murine leukemia virus. J Virol. 1984 Feb;49(2):471–478. doi: 10.1128/jvi.49.2.471-478.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Herschlag D., Khosla M., Tsuchihashi Z., Karpel R. L. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J. 1994 Jun 15;13(12):2913–2924. doi: 10.1002/j.1460-2075.1994.tb06586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem. 1995 Sep 8;270(36):20871–20874. doi: 10.1074/jbc.270.36.20871. [DOI] [PubMed] [Google Scholar]
  40. Housset V., De Rocquigny H., Roques B. P., Darlix J. L. Basic amino acids flanking the zinc finger of Moloney murine leukemia virus nucleocapsid protein NCp10 are critical for virus infectivity. J Virol. 1993 May;67(5):2537–2545. doi: 10.1128/jvi.67.5.2537-2545.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ji X., Klarmann G. J., Preston B. D. Effect of human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein on HIV-1 reverse transcriptase activity in vitro. Biochemistry. 1996 Jan 9;35(1):132–143. doi: 10.1021/bi951707e. [DOI] [PubMed] [Google Scholar]
  42. Karpel R. L., Henderson L. E., Oroszlan S. Interactions of retroviral structural proteins with single-stranded nucleic acids. J Biol Chem. 1987 Apr 15;262(11):4961–4967. [PubMed] [Google Scholar]
  43. Katz R. A., Skalka A. M. The retroviral enzymes. Annu Rev Biochem. 1994;63:133–173. doi: 10.1146/annurev.bi.63.070194.001025. [DOI] [PubMed] [Google Scholar]
  44. Khan R., Giedroc D. P. Recombinant human immunodeficiency virus type 1 nucleocapsid (NCp7) protein unwinds tRNA. J Biol Chem. 1992 Apr 5;267(10):6689–6695. [PubMed] [Google Scholar]
  45. Klarmann G. J., Schauber C. A., Preston B. D. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. J Biol Chem. 1993 May 5;268(13):9793–9802. [PubMed] [Google Scholar]
  46. Lam W. C., Maki A. H., Casas-Finet J. R., Erickson J. W., Kane B. P., Sowder R. C., 2nd, Henderson L. E. Phosphorescence and optically detected magnetic resonance investigation of the binding of the nucleocapsid protein of the human immunodeficiency virus type 1 and related peptides to RNA. Biochemistry. 1994 Sep 6;33(35):10693–10700. doi: 10.1021/bi00201a017. [DOI] [PubMed] [Google Scholar]
  47. Lam W. C., Maki A. H., Casas-Finet J. R., Erickson J. W., Sowder R. C., 2nd, Henderson L. E. Evidence for stacking interactions between 5-mercurated polyuridylic acid and HIV-1 p7 nucleocapsid protein obtained by phosphorescence and optically detected magnetic resonance (ODMR). FEBS Lett. 1993 Aug 9;328(1-2):45–48. doi: 10.1016/0014-5793(93)80962-t. [DOI] [PubMed] [Google Scholar]
  48. Lapadat-Tapolsky M., De Rocquigny H., Van Gent D., Roques B., Plasterk R., Darlix J. L. Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Res. 1993 Feb 25;21(4):831–839. doi: 10.1093/nar/21.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Lapadat-Tapolsky M., Pernelle C., Borie C., Darlix J. L. Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1. Nucleic Acids Res. 1995 Jul 11;23(13):2434–2441. doi: 10.1093/nar/23.13.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Levin J. G., Crouch R. J., Post K., Hu S. C., McKelvin D., Zweig M., Court D. L., Gerwin B. I. Functional organization of the murine leukemia virus reverse transcriptase: characterization of a bacterially expressed AKR DNA polymerase deficient in RNase H activity. J Virol. 1988 Nov;62(11):4376–4380. doi: 10.1128/jvi.62.11.4376-4380.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Maurer B., Bannert H., Darai G., Flügel R. M. Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. J Virol. 1988 May;62(5):1590–1597. doi: 10.1128/jvi.62.5.1590-1597.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Mely Y., Cornille F., Fournié-Zaluski M. C., Darlix J. L., Roques B. P., Gérard D. Investigation of zinc-binding affinities of Moloney murine leukemia virus nucleocapsid protein and its related zinc finger and modified peptides. Biopolymers. 1991 Jun;31(7):899–906. doi: 10.1002/bip.360310709. [DOI] [PubMed] [Google Scholar]
  53. Messer L. I., Currey K. M., O'Neill B. J., Maizel J. V., Jr, Levin J. G., Gerwin B. I. Functional analysis of reverse transcription by a frameshift pol mutant of murine leukemia virus. Virology. 1985 Oct 15;146(1):146–152. doi: 10.1016/0042-6822(85)90062-5. [DOI] [PubMed] [Google Scholar]
  54. Méric C., Goff S. P. Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in the Cys-His box of the nucleocapsid protein. J Virol. 1989 Apr;63(4):1558–1568. doi: 10.1128/jvi.63.4.1558-1568.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Méric C., Gouilloud E., Spahr P. F. Mutations in Rous sarcoma virus nucleocapsid protein p12 (NC): deletions of Cys-His boxes. J Virol. 1988 Sep;62(9):3328–3333. doi: 10.1128/jvi.62.9.3328-3333.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Méric C., Spahr P. F. Rous sarcoma virus nucleic acid-binding protein p12 is necessary for viral 70S RNA dimer formation and packaging. J Virol. 1986 Nov;60(2):450–459. doi: 10.1128/jvi.60.2.450-459.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Müller G., Strack B., Dannull J., Sproat B. S., Surovoy A., Jung G., Moelling K. Amino acid requirements of the nucleocapsid protein of HIV-1 for increasing catalytic activity of a Ki-ras ribozyme in vitro. J Mol Biol. 1994 Sep 30;242(4):422–429. doi: 10.1006/jmbi.1994.1592. [DOI] [PubMed] [Google Scholar]
  58. Peliska J. A., Balasubramanian S., Giedroc D. P., Benkovic S. J. Recombinant HIV-1 nucleocapsid protein accelerates HIV-1 reverse transcriptase catalyzed DNA strand transfer reactions and modulates RNase H activity. Biochemistry. 1994 Nov 22;33(46):13817–13823. doi: 10.1021/bi00250a036. [DOI] [PubMed] [Google Scholar]
  59. Peliska J. A., Benkovic S. J. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science. 1992 Nov 13;258(5085):1112–1118. doi: 10.1126/science.1279806. [DOI] [PubMed] [Google Scholar]
  60. Post K., Guo J., Kalman E., Uchida T., Crouch R. J., Levin J. G. A large deletion in the connection subdomain of murine leukemia virus reverse transcriptase or replacement of the RNase H domain with Escherichia coli RNase H results in altered polymerase and RNase H activities. Biochemistry. 1993 Jun 1;32(21):5508–5517. doi: 10.1021/bi00072a004. [DOI] [PubMed] [Google Scholar]
  61. Prats A. C., Housset V., de Billy G., Cornille F., Prats H., Roques B., Darlix J. L. Viral RNA annealing activities of the nucleocapsid protein of Moloney murine leukemia virus are zinc independent. Nucleic Acids Res. 1991 Jul 11;19(13):3533–3541. doi: 10.1093/nar/19.13.3533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Rein A., Ott D. E., Mirro J., Arthur L. O., Rice W., Henderson L. E. Inactivation of murine leukemia virus by compounds that react with the zinc finger in the viral nucleocapsid protein. J Virol. 1996 Aug;70(8):4966–4972. doi: 10.1128/jvi.70.8.4966-4972.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Rice W. G., Supko J. G., Malspeis L., Buckheit R. W., Jr, Clanton D., Bu M., Graham L., Schaeffer C. A., Turpin J. A., Domagala J. Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science. 1995 Nov 17;270(5239):1194–1197. doi: 10.1126/science.270.5239.1194. [DOI] [PubMed] [Google Scholar]
  64. Rodríguez-Rodríguez L., Tsuchihashi Z., Fuentes G. M., Bambara R. A., Fay P. J. Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro. J Biol Chem. 1995 Jun 23;270(25):15005–15011. doi: 10.1074/jbc.270.25.15005. [DOI] [PubMed] [Google Scholar]
  65. Schmalzbauer E., Strack B., Dannull J., Guehmann S., Moelling K. Mutations of basic amino acids of NCp7 of human immunodeficiency virus type 1 affect RNA binding in vitro. J Virol. 1996 Feb;70(2):771–777. doi: 10.1128/jvi.70.2.771-777.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. South T. L., Blake P. R., Sowder R. C., 3rd, Arthur L. O., Henderson L. E., Summers M. F. The nucleocapsid protein isolated from HIV-1 particles binds zinc and forms retroviral-type zinc fingers. Biochemistry. 1990 Aug 28;29(34):7786–7789. doi: 10.1021/bi00486a002. [DOI] [PubMed] [Google Scholar]
  67. Summers M. F., Henderson L. E., Chance M. R., Bess J. W., Jr, South T. L., Blake P. R., Sagi I., Perez-Alvarado G., Sowder R. C., 3rd, Hare D. R. Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci. 1992 May;1(5):563–574. doi: 10.1002/pro.5560010502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Surovoy A., Dannull J., Moelling K., Jung G. Conformational and nucleic acid binding studies on the synthetic nucleocapsid protein of HIV-1. J Mol Biol. 1993 Jan 5;229(1):94–104. doi: 10.1006/jmbi.1993.1011. [DOI] [PubMed] [Google Scholar]
  69. Sykora K. W., Moelling K. Properties of the avian viral protein p12. J Gen Virol. 1981 Aug;55(Pt 2):379–391. doi: 10.1099/0022-1317-55-2-379. [DOI] [PubMed] [Google Scholar]
  70. Tanchou V., Gabus C., Rogemond V., Darlix J. L. Formation of stable and functional HIV-1 nucleoprotein complexes in vitro. J Mol Biol. 1995 Oct 6;252(5):563–571. doi: 10.1006/jmbi.1995.0520. [DOI] [PubMed] [Google Scholar]
  71. Telesnitsky A., Goff S. P. RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1276–1280. doi: 10.1073/pnas.90.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Tsuchihashi Z., Brown P. O. DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J Virol. 1994 Sep;68(9):5863–5870. doi: 10.1128/jvi.68.9.5863-5870.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Tsuchihashi Z., Khosla M., Herschlag D. Protein enhancement of hammerhead ribozyme catalysis. Science. 1993 Oct 1;262(5130):99–102. doi: 10.1126/science.7692597. [DOI] [PubMed] [Google Scholar]
  74. Volkmann S., Dannull J., Moelling K. The polypurine tract, PPT, of HIV as target for antisense and triple-helix-forming oligonucleotides. Biochimie. 1993;75(1-2):71–78. doi: 10.1016/0300-9084(93)90027-p. [DOI] [PubMed] [Google Scholar]
  75. Weiss S., König B., Morikawa Y., Jones I. Recombinant HIV-1 nucleocapsid protein p15 produced as a fusion protein with glutathione S-transferase in Escherichia coli mediates dimerization and enhances reverse transcription of retroviral RNA. Gene. 1992 Nov 16;121(2):203–212. doi: 10.1016/0378-1119(92)90123-7. [DOI] [PubMed] [Google Scholar]
  76. You J. C., McHenry C. S. Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. J Biol Chem. 1994 Dec 16;269(50):31491–31495. [PubMed] [Google Scholar]
  77. Zhang Y., Barklis E. Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J Virol. 1995 Sep;69(9):5716–5722. doi: 10.1128/jvi.69.9.5716-5722.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES