Abstract
1. Adult male albino mice were injected subcutaneously with an organophosphorous anticholinesterase to initiate excessive variability in the latency of indirectly elicited muscle action potentials (jitter) when assessed 5 days later. 2. Pretreatment of the mice with a single dose of pyridostigmine prevented the development of jitter after subsequent dosing with an organophosphate. 3. Treatment with one dose of pralidoxime (2PAM) prevented the development of jitter if given less than 1 h after treatment with ecothiopate, a reactivatable inhibitor of cholinesterase. Similar treatment with 2PAM after a non-reactivatable inhibitor did not prevent the development of jitter. The repeated administration of 2PAM over 12 h did ameliorate jitter. 4. Pretreatment of mice orally with alpha-tocopherol and N-acetylcysteine, known to prevent ecothiopate-induced myopathy, did not prevent the development of jitter after ecothiopate. 5. It is concluded that the development of jitter was a consequence of the inhibition of acetylcholinesterase, and although jitter did not develop acutely, the potential for the full development of jitter was achieved about 1 h after intoxication with ecothiopate. The development of jitter did not involve the generation of free radicals. Reduction of the early effects of intoxication with anticholinesterases by pyridostigmine or 2PAM prevented the development of jitter.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alkondon M., Rao K. S., Albuquerque E. X. Acetylcholinesterase reactivators modify the functional properties of the nicotinic acetylcholine receptor ion channel. J Pharmacol Exp Ther. 1988 May;245(2):543–556. [PubMed] [Google Scholar]
- Baker D. J., Cross N. L., Sedgwick E. M. Normality of single fibre electromyographic jitter: a new approach. J Neurol Neurosurg Psychiatry. 1987 Apr;50(4):471–475. doi: 10.1136/jnnp.50.4.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burd P. F., Ferry C. B., Smith J. W. Accumulation of extracellular calcium at the endplate of mouse diaphragm after ecothiopate in vitro. Br J Pharmacol. 1989 Sep;98(1):243–251. doi: 10.1111/j.1476-5381.1989.tb16888.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dirnhuber P., Green D. M. Effectiveness of pyridostigmine in reversing neuromuscular blockade produced by soman. J Pharm Pharmacol. 1978 Jul;30(7):419–425. doi: 10.1111/j.2042-7158.1978.tb13278.x. [DOI] [PubMed] [Google Scholar]
- Ekstedt J., Nilsson G., Stalberg E. Calculation of the electromyographic jitter. J Neurol Neurosurg Psychiatry. 1974 May;37(5):526–539. doi: 10.1136/jnnp.37.5.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans R. H. The entry of labelled calcium into the innervated region of the mouse diaphragm muscle. J Physiol. 1974 Aug;240(3):517–533. doi: 10.1113/jphysiol.1974.sp010621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferry C. B., Cullen M. J. Myopathic changes in indirectly stimulated mouse diaphragm after ecothiopate in vitro. Int J Exp Pathol. 1991 Jun;72(3):329–343. [PMC free article] [PubMed] [Google Scholar]
- French M. C., Wetherell J. R., White P. D. The reversal by pyridostigmine of neuromuscular block produced by soman. J Pharm Pharmacol. 1979 May;31(5):290–294. doi: 10.1111/j.2042-7158.1979.tb13503.x. [DOI] [PubMed] [Google Scholar]
- Harris L. W., Yamamura H. I., Fleisher J. H. De novo synthesis of acetylcholinesterase in guinea pig retina after inhibition by pinacolyl methylphosphonofluoridate. Biochem Pharmacol. 1971 Oct;20(10):2927–2930. doi: 10.1016/0006-2952(71)90209-7. [DOI] [PubMed] [Google Scholar]
- KOELLE G. B., STEINER E. C. The cerebral distributions of a tertiary and a quaternary anticholinesterase agent following intravenous and intraventricular injection. J Pharmacol Exp Ther. 1956 Dec;118(4):420–434. [PubMed] [Google Scholar]
- Kelly S. S., Ferry C. B., Bamforth J. P. The effects of anticholinesterases on the latencies of action potentials in mouse skeletal muscles. Br J Pharmacol. 1990 Apr;99(4):721–726. doi: 10.1111/j.1476-5381.1990.tb12996.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leadbeater L., Inns R. H., Rylands J. M. Treatment of poisoning by soman. Fundam Appl Toxicol. 1985 Dec;5(6 Pt 2):S225–S231. doi: 10.1016/0272-0590(85)90132-0. [DOI] [PubMed] [Google Scholar]
- Miledi R., Parker I., Schalow G. Transmitter induced calcium entry across the post-synaptic membrane at frog end-plates measured using arsenazo III. J Physiol. 1980 Mar;300:197–212. doi: 10.1113/jphysiol.1980.sp013158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman J. R., Virgin J. B., Younkin L. H., Younkin S. G. Turnover of acetylcholinesterase in innervated and denervated rat diaphragm. J Physiol. 1984 Jul;352:305–318. doi: 10.1113/jphysiol.1984.sp015292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sidell F. R., Groff W. A. Intramuscular and intravenous administration of small doses of 2-pyridinium aldoxime methochloride to man. J Pharm Sci. 1971 Aug;60(8):1224–1228. doi: 10.1002/jps.2600600823. [DOI] [PubMed] [Google Scholar]
- Smith A. P., Muir A. W. Antidotal action of the oxime HS6 at the soman poisoned neuromuscular junction of the rat and guinea-pig. J Pharm Pharmacol. 1977 Dec;29(12):762–764. doi: 10.1111/j.2042-7158.1977.tb11458.x. [DOI] [PubMed] [Google Scholar]
- Smith A. P., Van der Wiel H. J., Wolthuis O. L. Analysis of oxime-induced neuromuscular recovery in guinea pig, rat and man following soman poisoning in vitro. Eur J Pharmacol. 1981 Mar 26;70(3):371–379. doi: 10.1016/0014-2999(81)90170-9. [DOI] [PubMed] [Google Scholar]
