Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Nov;107(3):837–841. doi: 10.1111/j.1476-5381.1992.tb14533.x

A possible role of the L-arginine-nitric oxide pathway in the modulation of cholinergic transmission in the guinea-pig taenia coli.

M A Knudsen 1, A Tøttrup 1
PMCID: PMC1907750  PMID: 1335344

Abstract

1. The role of the L-arginine-nitric oxide (NO) pathway for non-adrenergic, non-cholinergic (NANC) relaxation of the guinea-pig taenia coli was studied by recording isometric tension in response to transmural field stimulation (TMS). 2. In preparations precontracted with prostaglandin F2 alpha (PGF2 alpha, 10(-6) M), TMS induced frequency-dependent responses of the muscle strips which could be abolished by tetrodotoxin (10(-6) M). NG-nitro-L-arginine (L-NNA, 10(-4) M), an L-arginine analogue, and potent inhibitor of NO synthesis, stereospecifically inhibited maximum relaxations, but did not shift the frequency-response curve. Pre-incubation with NG-nitro-D-arginine (D-NNA, 10(-4) M), atropine (10(-6) M) plus L-NNA (10(-4) M), or atropine (10(-6) M) alone, had no influence on the frequency-response characteristics. 3. L-NNA (10(-7)-10(-4) M) concentration-dependently inhibited relaxations in PGF2 alpha (10(-6) M) precontracted strips in response to TMS, but did not abolish relaxations. Preincubation with L-arginine (10(-4) M) inhibited these effects of L-NNA. L-NNA (10(-4) M) had no effect on the inhibitory response during TMS in strips preincubated with atropine (10(-6) M). 4. The relaxation induced by sodium nitroprusside and forskolin (10(-9)-10(-4) M) was not influenced by L-NNA (10(-4) M) preincubation as expressed by identical pD2 and Emax values. 5. Contractions induced by PGF2 alpha (10(-9)-10(-4) M) and carbachol (10(-9)-10(-4) M) were not affected by pretreatment with L-NNA (10(-4) M), was expressed by identical pD2 and Emax values.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
837

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belvisi M. G., Stretton D., Barnes P. J. Nitric oxide as an endogenous modulator of cholinergic neurotransmission in guinea-pig airways. Eur J Pharmacol. 1991 Jun 6;198(2-3):219–221. doi: 10.1016/0014-2999(91)90626-2. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. R., Burnstock G., Holman M. Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol. 1966 Feb;182(3):541–558. doi: 10.1113/jphysiol.1966.sp007836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burnstock G., Campbell G., Rand M. J. The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol. 1966 Feb;182(3):504–526. doi: 10.1113/jphysiol.1966.sp007834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
  5. Cocks T., Burnstock G. Effects of neuronal polypeptides on intestinal smooth muscle; a comparison with non-adrenergic, non-cholinergic nerve stimulation and ATP. Eur J Pharmacol. 1979 Mar 1;54(3):251–259. doi: 10.1016/0014-2999(79)90084-0. [DOI] [PubMed] [Google Scholar]
  6. Costa M., Furness J. B., Humphreys C. M. Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea-pig gastrointestinal tract. Naunyn Schmiedebergs Arch Pharmacol. 1986 Jan;332(1):79–88. doi: 10.1007/BF00633202. [DOI] [PubMed] [Google Scholar]
  7. Gillespie J. S., Liu X. R., Martin W. The effects of L-arginine and NG-monomethyl L-arginine on the response of the rat anococcygeus muscle to NANC nerve stimulation. Br J Pharmacol. 1989 Dec;98(4):1080–1082. doi: 10.1111/j.1476-5381.1989.tb12650.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grider J. R., Cable M. B., Bitar K. N., Said S. I., Makhlouf G. M. Vasoactive intestinal peptide. Relaxant neurotransmitter in tenia coli of the guinea pig. Gastroenterology. 1985 Jul;89(1):36–42. [PubMed] [Google Scholar]
  9. Hills J. M., Collis C. S., Burnstock G. The effects of vasoactive intestinal polypeptide on the electrical activity of guinea-pig intestinal smooth muscle. Eur J Pharmacol. 1983 Apr 8;88(4):371–376. doi: 10.1016/0014-2999(83)90588-5. [DOI] [PubMed] [Google Scholar]
  10. Hobbs A. J., Gibson A. L-NG-nitro-arginine and its methyl ester are potent inhibitors of non-adrenergic, non-cholinergic transmission in the rat anococcygeus. Br J Pharmacol. 1990 Aug;100(4):749–752. doi: 10.1111/j.1476-5381.1990.tb14086.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knudsen M. A., Svane D., Tøttrup A. Importance of the L-arginine-nitric oxide pathway in NANC nerve function of the opossum esophageal body. Dig Dis. 1991;9(6):365–370. doi: 10.1159/000171325. [DOI] [PubMed] [Google Scholar]
  12. Li C. G., Rand M. J. Evidence for a role of nitric oxide in the neurotransmitter system mediating relaxation of the rat anococcygeus muscle. Clin Exp Pharmacol Physiol. 1989 Dec;16(12):933–938. doi: 10.1111/j.1440-1681.1989.tb02404.x. [DOI] [PubMed] [Google Scholar]
  13. Maas A. J., Den Hertog A. The effect of apamin on the smooth muscle cells of the guinea-pig taenia coli. Eur J Pharmacol. 1979 Sep 15;58(2):151–156. doi: 10.1016/0014-2999(79)90006-2. [DOI] [PubMed] [Google Scholar]
  14. Mackenzie I., Burnstock G. Evidence against vasoactive intestinal polypeptide being the non-adrenergic, non-cholinergic inhibitory transmitter released from nerves supplying the smooth muscle of the guinea-pig taenia coli. Eur J Pharmacol. 1980 Oct 17;67(2-3):255–264. doi: 10.1016/0014-2999(80)90506-3. [DOI] [PubMed] [Google Scholar]
  15. Matthews J. N., Altman D. G., Campbell M. J., Royston P. Analysis of serial measurements in medical research. BMJ. 1990 Jan 27;300(6719):230–235. doi: 10.1136/bmj.300.6719.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rapoport R. M., Murad F. Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role of cyclic GMP. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(4-5):281–296. [PubMed] [Google Scholar]
  17. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tøttrup A., Glavind E. B., Svane D. Involvement of the L-arginine-nitric oxide pathway in internal anal sphincter relaxation. Gastroenterology. 1992 Feb;102(2):409–415. doi: 10.1016/0016-5085(92)90084-c. [DOI] [PubMed] [Google Scholar]
  19. Tøttrup A., Knudsen M. A., Gregersen H. The role of the L-arginine-nitric oxide pathway in relaxation of the opossum lower oesophageal sphincter. Br J Pharmacol. 1991 Sep;104(1):113–116. doi: 10.1111/j.1476-5381.1991.tb12393.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tøttrup A., Svane D., Forman A. Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. Am J Physiol. 1991 Mar;260(3 Pt 1):G385–G389. doi: 10.1152/ajpgi.1991.260.3.G385. [DOI] [PubMed] [Google Scholar]
  21. White T. D. Role of adenine compounds in autonomic neurotransmission. Pharmacol Ther. 1988;38(2):129–168. doi: 10.1016/0163-7258(88)90095-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES