Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jul;103(3):1814–1818. doi: 10.1111/j.1476-5381.1991.tb09868.x

Guinea-pig isolated trachealis: the effects of charybdotoxin on mechanical activity, membrane potential changes and the activity of plasmalemmal K(+)-channels.

M A Murray 1, J L Berry 1, S J Cook 1, R W Foster 1, K A Green 1, R C Small 1
PMCID: PMC1907800  PMID: 1718525

Abstract

1. A study has been made, in guinea-pig isolated trachealis, of the effects of charybdotoxin in modulating (a) the activity of large conductance K(+)-channels, (b) the spontaneous electrical activity of intact cells and (c) the mechanical effects of some bronchodilator drugs. 2. Single smooth muscle cells were isolated from guinea-pig trachealis by enzymic digestion and were studied by the patch clamp recording technique. Recordings were made from outside-out plasmalemmal patches when the medium bathing the external surface of the patches contained 1.2 mM Ca2+ and 6 mM K+ while that bathing the cytosolic surface contained 0.1 microM Ca2+ and 140 mM K+. Charybdotoxin (100 nM), applied to the external surface of patches held at 0 mV, abolished the unitary currents associated with the opening of large conductance K(+)-channels. 3. Opened segments of guinea-pig trachea were used for the simultaneous recording of membrane potential and tension changes. In these experiments charybdotoxin (100 nM) caused the conversion of spontaneous electrical slow waves into spike-like action potentials. This effect was accompanied by a very small reduction in resting membrane potential. 4. Tissue bath recording showed that charybdotoxin (100 nM) increased the spontaneous mechanical tone of the tissue, antagonized (2.8 fold in each case) the relaxant actions of isoprenaline and theophylline but did not antagonize the relaxant actions of cromakalim or RP 49356. 5. It is concluded that charybdotoxin is an effective inhibitor of large conductance K(+)-channels in guinea-pig trachealis cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1814

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S. L., Beech D. J., Foster R. W., Morgan G. P., Small R. C. Electrophysiological and other aspects of the relaxant action of isoprenaline in guinea-pig isolated trachealis. Br J Pharmacol. 1985 Dec;86(4):843–854. doi: 10.1111/j.1476-5381.1985.tb11106.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen S. L., Boyle J. P., Cortijo J., Foster R. W., Morgan G. P., Small R. C. Electrical and mechanical effects of BRL34915 in guinea-pig isolated trachealis. Br J Pharmacol. 1986 Oct;89(2):395–405. doi: 10.1111/j.1476-5381.1986.tb10273.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry J. L., Elliott K. R., Foster R. W., Green K. A., Murray M. A., Small R. C. Mechanical, biochemical and electrophysiological studies of RP 49356 and cromakalim in guinea-pig and bovine trachealis muscle. Pulm Pharmacol. 1991;4(2):91–98. doi: 10.1016/0952-0600(91)90058-b. [DOI] [PubMed] [Google Scholar]
  4. Dixon J. S., Small R. C. Evidence of poor conduction of muscle excitation in the longitudinal axis of guinea-pig isolated trachea. Br J Pharmacol. 1983 May;79(1):75–83. doi: 10.1111/j.1476-5381.1983.tb10498.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foster R. W., Small R. C., Weston A. H. Evidence that the spasmogenic action of tetraethylammonium in guinea-pig trachealis is both direct and dependent on the cellular influx of calcium ion. Br J Pharmacol. 1983 May;79(1):255–263. doi: 10.1111/j.1476-5381.1983.tb10519.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green K. A., Foster R. W., Small R. C. A patch-clamp study of K(+)-channel activity in bovine isolated tracheal smooth muscle cells. Br J Pharmacol. 1991 Apr;102(4):871–878. doi: 10.1111/j.1476-5381.1991.tb12269.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hisada T., Kurachi Y., Sugimoto T. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea. Pflugers Arch. 1990 Apr;416(1-2):151–161. doi: 10.1007/BF00370237. [DOI] [PubMed] [Google Scholar]
  8. Kumar M. A. The basis of beta adrenergic bronchodilation. J Pharmacol Exp Ther. 1978 Sep;206(3):528–534. [PubMed] [Google Scholar]
  9. Kume H., Takagi K., Satake T., Tokuno H., Tomita T. Effects of intracellular pH on calcium-activated potassium channels in rabbit tracheal smooth muscle. J Physiol. 1990 May;424:445–457. doi: 10.1113/jphysiol.1990.sp018076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kume H., Takai A., Tokuno H., Tomita T. Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation. Nature. 1989 Sep 14;341(6238):152–154. doi: 10.1038/341152a0. [DOI] [PubMed] [Google Scholar]
  11. McCann J. D., Welsh M. J. Calcium-activated potassium channels in canine airway smooth muscle. J Physiol. 1986 Mar;372:113–127. doi: 10.1113/jphysiol.1986.sp016000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Small R. C., Boyle J. P., Duty S., Elliott K. R., Foster R. W., Watt A. J. Analysis of the relaxant effects of AH 21-132 in guinea-pig isolated trachealis. Br J Pharmacol. 1989 Aug;97(4):1165–1173. doi: 10.1111/j.1476-5381.1989.tb12575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Small R. C. Electrical slow waves and tone of guinea-pig isolated trachealis muscle: effects of drugs and temperature changes. Br J Pharmacol. 1982 Sep;77(1):45–54. doi: 10.1111/j.1476-5381.1982.tb09267.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES