Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):7250–7254. doi: 10.1128/jvi.70.10.7250-7254.1996

The neonatal Fc receptor is not required for mucosal infection by mouse mammary tumor virus.

D Velin 1, H Acha-Orbea 1, J P Kraehenbuhl 1
PMCID: PMC190783  PMID: 8794377

Abstract

The milk-borne mouse mammary tumor virus (MMTV) infects newborn mice via the intestine. Infection is initially restricted to Peyer's patches and later spreads to the epithelial cells of the mammary gland. The receptor that mediates uptake and transport of MMTV across the intestinal barrier has not yet been identified, The neonatal Fc receptor (nFcR), which is expressed by enterocytes during the first two weeks of life, is downregulated at weaning, and its disappearance correlates with the onset of intestinal resistance to MMTV. To test whether the nFcR mediates transport and allows infection, we foster nursed on infected MMTV mothers beta2 microglobulin-deficient (beta2m-deficient) newborn mice that are unable to express the nFcR at the surface of their enterocytes. Exposure of beta2m-deficient mice to milk-borne virus resulted in the deletion of peripheral blood T cells reactive to the superantigen encoded by MMTV. Since beta2m-deficient newborn mice are susceptible to MMTV infection despite the lack of the nFcR, we conclude that the nFcR is not required for MMTV transport.

Full Text

The Full Text of this article is available as a PDF (359.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson D. R., Powers A., Rodewald R. Intestinal absorption of immune complexes by neonatal rats: a route of antigen transfer from mother to young. Science. 1979 Nov 2;206(4418):567–569. doi: 10.1126/science.493961. [DOI] [PubMed] [Google Scholar]
  2. Amerongen H. M., Weltzin R., Farnet C. M., Michetti P., Haseltine W. A., Neutra M. R. Transepithelial transport of HIV-1 by intestinal M cells: a mechanism for transmission of AIDS. J Acquir Immune Defic Syndr. 1991;4(8):760–765. [PubMed] [Google Scholar]
  3. Beutner U., Kraus E., Kitamura D., Rajewsky K., Huber B. T. B cells are essential for murine mammary tumor virus transmission, but not for presentation of endogenous superantigens. J Exp Med. 1994 May 1;179(5):1457–1466. doi: 10.1084/jem.179.5.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevilacqua G., Marchetti A., Biondi R. Ultrastructural features of the intestinal absorption of mouse mammary tumor virus in newborn BALB/cfRIII mice. Gastroenterology. 1989 Jan;96(1):139–145. doi: 10.1016/0016-5085(89)90774-9. [DOI] [PubMed] [Google Scholar]
  5. Bittner J. J. THE MILK-INFLUENCE OF BREAST TUMORS IN MICE. Science. 1942 May 1;95(2470):462–463. doi: 10.1126/science.95.2470.462. [DOI] [PubMed] [Google Scholar]
  6. Gonnella P. A., Neutra M. R. Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum. J Cell Biol. 1984 Sep;99(3):909–917. doi: 10.1083/jcb.99.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hainaut P., Francois C., Calberg-Bacq C. M., Vaira D., Osterrieth P. M. Peroral infection of suckling mice with milk-borne mouse mammary tumour virus: uptake of the main viral antigens by the gut. J Gen Virol. 1983 Dec;64(Pt 12):2535–2548. doi: 10.1099/0022-1317-64-12-2535. [DOI] [PubMed] [Google Scholar]
  8. Held W., Shakhov A. N., Izui S., Waanders G. A., Scarpellino L., MacDonald H. R., Acha-Orbea H. Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. J Exp Med. 1993 Feb 1;177(2):359–366. doi: 10.1084/jem.177.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Held W., Shakhov A. N., Waanders G., Scarpellino L., Luethy R., Kraehenbuhl J. P., MacDonald H. R., Acha-Orbea H. An exogenous mouse mammary tumor virus with properties of Mls-1a (Mtv-7). J Exp Med. 1992 Jun 1;175(6):1623–1633. doi: 10.1084/jem.175.6.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Held W., Waanders G. A., Shakhov A. N., Scarpellino L., Acha-Orbea H., MacDonald H. R. Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Cell. 1993 Aug 13;74(3):529–540. doi: 10.1016/0092-8674(93)80054-i. [DOI] [PubMed] [Google Scholar]
  11. Israel E. J., Patel V. K., Taylor S. F., Marshak-Rothstein A., Simister N. E. Requirement for a beta 2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J Immunol. 1995 Jun 15;154(12):6246–6251. [PubMed] [Google Scholar]
  12. Karapetian O., Shakhov A. N., Kraehenbuhl J. P., Acha-Orbea H. Retroviral infection of neonatal Peyer's patch lymphocytes: the mouse mammary tumor virus model. J Exp Med. 1994 Oct 1;180(4):1511–1516. doi: 10.1084/jem.180.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kerneis S., Bogdanova A., Colucci-Guyon E., Kraehenbuhl J. P., Pringault E. Cytosolic distribution of villin in M cells from mouse Peyer's patches correlates with the absence of a brush border. Gastroenterology. 1996 Feb;110(2):515–521. doi: 10.1053/gast.1996.v110.pm8566599. [DOI] [PubMed] [Google Scholar]
  14. Klein-Schneegans A. S., Gavériaux C., Fonteneau P., Loor F. Indirect double sandwich ELISA for the specific and quantitative measurement of mouse IgM, IgA and IgG subclasses. J Immunol Methods. 1989 Apr 21;119(1):117–125. doi: 10.1016/0022-1759(89)90388-8. [DOI] [PubMed] [Google Scholar]
  15. Klein-Schneegans A. S., Kuntz L., Fonteneau P., Loor F. An indirect asymmetrical sandwich ELISA using anti-allotype antibodies for the specific and quantitative measurement of mouse IgG2a of Igh-1b allotype. J Immunol Methods. 1989 Dec 20;125(1-2):207–213. doi: 10.1016/0022-1759(89)90095-1. [DOI] [PubMed] [Google Scholar]
  16. Kraehenbuhl J. P., Bron C., Sordat B. Transfer of humoral secretory and cellular immunity from mother to offspring. Curr Top Pathol. 1979;66:105–157. doi: 10.1007/978-3-642-67205-7_4. [DOI] [PubMed] [Google Scholar]
  17. Liao N. S., Maltzman J., Raulet D. H. Positive selection determines T cell receptor V beta 14 gene usage by CD8+ T cells. J Exp Med. 1989 Jul 1;170(1):135–143. doi: 10.1084/jem.170.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacKenzie N. M., Keeler K. D. A flow microfluorimetric analysis of the binding of immunoglobulins to Fc gamma receptors on brush borders of the neonatal mouse jejunal epithelium. Immunology. 1984 Mar;51(3):529–533. [PMC free article] [PubMed] [Google Scholar]
  19. Pappo J., Owen R. L. Absence of secretory component expression by epithelial cells overlying rabbit gut-associated lymphoid tissue. Gastroenterology. 1988 Nov;95(5):1173–1177. doi: 10.1016/0016-5085(88)90347-2. [DOI] [PubMed] [Google Scholar]
  20. Payne J., Huber B. T., Cannon N. A., Schneider R., Schilham M. W., Acha-Orbea H., MacDonald H. R., Hengartner H. Two monoclonal rat antibodies with specificity for the beta-chain variable region V beta 6 of the murine T-cell receptor. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7695–7698. doi: 10.1073/pnas.85.20.7695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Penninger J. M., Schilham M. W., Timms E., Wallace V. A., Mak T. W. T cell repertoire and clonal deletion of Mtv superantigen-reactive T cells in mice lacking CD4 and CD8 molecules. Eur J Immunol. 1995 Jul;25(7):2115–2118. doi: 10.1002/eji.1830250748. [DOI] [PubMed] [Google Scholar]
  22. Phillips D. M., Bourinbaiar A. S. Mechanism of HIV spread from lymphocytes to epithelia. Virology. 1992 Jan;186(1):261–273. doi: 10.1016/0042-6822(92)90080-9. [DOI] [PubMed] [Google Scholar]
  23. Rodewald R., Kraehenbuhl J. P. Receptor-mediated transport of IgG. J Cell Biol. 1984 Jul;99(1 Pt 2):159s–164s. doi: 10.1083/jcb.99.1.159s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rodewald R. pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol. 1976 Nov;71(2):666–669. doi: 10.1083/jcb.71.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Siciński P., Rowiński J., Warchoł J. B., Jarzabek Z., Gut W., Szczygieł B., Bielecki K., Koch G. Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology. 1990 Jan;98(1):56–58. doi: 10.1016/0016-5085(90)91290-m. [DOI] [PubMed] [Google Scholar]
  26. Simister N. E., Mostov K. E. An Fc receptor structurally related to MHC class I antigens. Nature. 1989 Jan 12;337(6203):184–187. doi: 10.1038/337184a0. [DOI] [PubMed] [Google Scholar]
  27. Waanders G. A., Shakhov A. N., Held W., Karapetian O., Acha-Orbea H., MacDonald H. R. Peripheral T cell activation and deletion induced by transfer of lymphocyte subsets expressing endogenous or exogenous mouse mammary tumor virus. J Exp Med. 1993 May 1;177(5):1359–1366. doi: 10.1084/jem.177.5.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weltzin R., Lucia-Jandris P., Michetti P., Fields B. N., Kraehenbuhl J. P., Neutra M. R. Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J Cell Biol. 1989 May;108(5):1673–1685. doi: 10.1083/jcb.108.5.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wolf J. L., Rubin D. H., Finberg R., Kauffman R. S., Sharpe A. H., Trier J. S., Fields B. N. Intestinal M cells: a pathway for entry of reovirus into the host. Science. 1981 Apr 24;212(4493):471–472. doi: 10.1126/science.6259737. [DOI] [PubMed] [Google Scholar]
  30. Zijlstra M., Bix M., Simister N. E., Loring J. M., Raulet D. H., Jaenisch R. Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature. 1990 Apr 19;344(6268):742–746. doi: 10.1038/344742a0. [DOI] [PubMed] [Google Scholar]
  31. Zijlstra M., Li E., Sajjadi F., Subramani S., Jaenisch R. Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature. 1989 Nov 23;342(6248):435–438. doi: 10.1038/342435a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES