Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):7270–7274. doi: 10.1128/jvi.70.10.7270-7274.1996

In vivo epinephrine reactivation of ocular herpes simplex virus type 1 in the rabbit is correlated to a 370-base-pair region located between the promoter and the 5' end of the 2.0 kilobase latency-associated transcript.

J M Hill 1, J B Maggioncalda 1, H H Garza Jr 1, Y H Su 1, N W Fraser 1, T M Block 1
PMCID: PMC190787  PMID: 8794381

Abstract

A rabbit ocular model of epinephrine-induced herpes simplex virus type 1 reactivation was employed to study the effect of a deletion in the latency-associated transcript domain. A viral construct derived from 17Syn+, designated 17deltaSty, has a deletion of 370 nucleotides between genomic positions 118880 and 119250. 17deltaSty has been shown to reactivate with wild-type virus kinetics from explants of trigeminal ganglia from latently infected mice. To determine the behavior of this mutant in an in vivo, inducible reactivation system, rabbit corneas were infected with 17Syn+, 17deltaSty, or its rescuant, 17detlaSty-Res. After viral latency was established, transcorneal epinephrine iontophoresis was performed. The rabbits latently infected with 17deltaSty exhibited a significantly reduced ability to undergo adrenergically induced reactivation, i.e., viral shedding in the tears, compared with rabbits infected with either 17Syn+ or 17deltaSty-Res. However, quantitative PCR demonstrated similar numbers of viral genomes in the trigeminal ganglia from rabbits latently infected with all three viruses, and all three viruses reactivated in vitro with wild-type kinetics in an explant cocultivation assay. These studies indicate that the 370-bp region deleted in the 17deltaSty construct plays a role in epinephrine-induced reactivation.

Full Text

The Full Text of this article is available as a PDF (198.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Block T. M., Deshmane S., Masonis J., Maggioncalda J., Valyi-Nagi T., Fraser N. W. An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers. Virology. 1993 Feb;192(2):618–630. doi: 10.1006/viro.1993.1078. [DOI] [PubMed] [Google Scholar]
  2. Block T. M., Spivack J. G., Steiner I., Deshmane S., McIntosh M. T., Lirette R. P., Fraser N. W. A herpes simplex virus type 1 latency-associated transcript mutant reactivates with normal kinetics from latent infection. J Virol. 1990 Jul;64(7):3417–3426. doi: 10.1128/jvi.64.7.3417-3426.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloom D. C., Devi-Rao G. B., Hill J. M., Stevens J. G., Wagner E. K. Molecular analysis of herpes simplex virus type 1 during epinephrine-induced reactivation of latently infected rabbits in vivo. J Virol. 1994 Mar;68(3):1283–1292. doi: 10.1128/jvi.68.3.1283-1292.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom D. C., Hill J. M., Devi-Rao G., Wagner E. K., Feldman L. T., Stevens J. G. A 348-base-pair region in the latency-associated transcript facilitates herpes simplex virus type 1 reactivation. J Virol. 1996 Apr;70(4):2449–2459. doi: 10.1128/jvi.70.4.2449-2459.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen X., Schmidt M. C., Goins W. F., Glorioso J. C. Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. J Virol. 1995 Dec;69(12):7899–7908. doi: 10.1128/jvi.69.12.7899-7908.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clough D. W., Kunkel L. M., Davidson R. L. 5-Azacytidine-induced reactivation of a herpes simplex thymidine kinase gene. Science. 1982 Apr 2;216(4541):70–73. doi: 10.1126/science.6175023. [DOI] [PubMed] [Google Scholar]
  7. Cook S. D., Hill J. M., Lynas C., Maitland N. J. Latency-associated transcripts in corneas and ganglia of HSV-1 infected rabbits. Br J Ophthalmol. 1991 Nov;75(11):644–648. doi: 10.1136/bjo.75.11.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook S. D., Paveloff M. J., Doucet J. J., Cottingham A. J., Sedarati F., Hill J. M. Ocular herpes simplex virus reactivation in mice latently infected with latency-associated transcript mutants. Invest Ophthalmol Vis Sci. 1991 Apr;32(5):1558–1561. [PubMed] [Google Scholar]
  9. Farrell M. J., Hill J. M., Margolis T. P., Stevens J. G., Wagner E. K., Feldman L. T. The herpes simplex virus type 1 reactivation function lies outside the latency-associated transcript open reading frame ORF-2. J Virol. 1993 Jun;67(6):3653–3655. doi: 10.1128/jvi.67.6.3653-3655.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fynan E. F., Ewert D. L., Block T. M. Latency and reactivation of Marek's disease virus in B lymphocytes transformed by avian leukosis virus. J Gen Virol. 1993 Oct;74(Pt 10):2163–2170. doi: 10.1099/0022-1317-74-10-2163. [DOI] [PubMed] [Google Scholar]
  11. Goins W. F., Sternberg L. R., Croen K. D., Krause P. R., Hendricks R. L., Fink D. J., Straus S. E., Levine M., Glorioso J. C. A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J Virol. 1994 Apr;68(4):2239–2252. doi: 10.1128/jvi.68.4.2239-2252.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hill J. M., Dudley J. B., Shimomura Y., Kaufman H. E. Quantitation and kinetics of induced HSV-1 ocular shedding. Curr Eye Res. 1986 Mar;5(3):241–246. doi: 10.3109/02713688609020049. [DOI] [PubMed] [Google Scholar]
  13. Hill J. M., Gebhardt B. M., Wen R., Bouterie A. M., Thompson H. W., O'Callaghan R. J., Halford W. P., Kaufman H. E. Quantitation of herpes simplex virus type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. J Virol. 1996 May;70(5):3137–3141. doi: 10.1128/jvi.70.5.3137-3141.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill J. M., Halford W. P., Wen R., Engel L. S., Green L. C., Gebhardt B. M. Quantitative analysis of polymerase chain reaction products by dot blot. Anal Biochem. 1996 Mar 1;235(1):44–48. doi: 10.1006/abio.1996.0089. [DOI] [PubMed] [Google Scholar]
  15. Hill J. M., Haruta Y., Rootman D. S. Adrenergically induced recurrent HSV-1 corneal epithelial lesions. Curr Eye Res. 1987 Aug;6(8):1065–1071. doi: 10.3109/02713688709034878. [DOI] [PubMed] [Google Scholar]
  16. Hill J. M., Rayfield M. A., Haruta Y. Strain specificity of spontaneous and adrenergically induced HSV-1 ocular reactivation in latently infected rabbits. Curr Eye Res. 1987 Jan;6(1):91–97. doi: 10.3109/02713688709020074. [DOI] [PubMed] [Google Scholar]
  17. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., Stevens J. G. Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology. 1990 Jan;174(1):117–125. doi: 10.1016/0042-6822(90)90060-5. [DOI] [PubMed] [Google Scholar]
  18. Honess R. W., Gompels U. A., Barrell B. G., Craxton M., Cameron K. R., Staden R., Chang Y. N., Hayward G. S. Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J Gen Virol. 1989 Apr;70(Pt 4):837–855. doi: 10.1099/0022-1317-70-4-837. [DOI] [PubMed] [Google Scholar]
  19. Karlin S., Doerfler W., Cardon L. R. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J Virol. 1994 May;68(5):2889–2897. doi: 10.1128/jvi.68.5.2889-2897.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maggioncalda J., Mehta A., Fraser N. W., Block T. M. Analysis of a herpes simplex virus type 1 LAT mutant with a deletion between the putative promoter and the 5' end of the 2.0-kilobase transcript. J Virol. 1994 Dec;68(12):7816–7824. doi: 10.1128/jvi.68.12.7816-7824.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Perng G. C., Dunkel E. C., Geary P. A., Slanina S. M., Ghiasi H., Kaiwar R., Nesburn A. B., Wechsler S. L. The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol. 1994 Dec;68(12):8045–8055. doi: 10.1128/jvi.68.12.8045-8055.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perng G. C., Ghiasi H., Slanina S. M., Nesburn A. B., Wechsler S. L. The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol. 1996 Feb;70(2):976–984. doi: 10.1128/jvi.70.2.976-984.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perng G. C., Slanina S. M., Ghiasi H., Nesburn A. B., Wechsler S. L. A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. J Virol. 1996 Mar;70(3):2014–2018. doi: 10.1128/jvi.70.3.2014-2018.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Singer-Sam J., Riggs A. D. X chromosome inactivation and DNA methylation. EXS. 1993;64:358–384. doi: 10.1007/978-3-0348-9118-9_16. [DOI] [PubMed] [Google Scholar]
  25. Trousdale M. D., Steiner I., Spivack J. G., Deshmane S. L., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model. J Virol. 1991 Dec;65(12):6989–6993. doi: 10.1128/jvi.65.12.6989-6993.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Youssoufian H., Hammer S. M., Hirsch M. S., Mulder C. Methylation of the viral genome in an in vitro model of herpes simplex virus latency. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2207–2210. doi: 10.1073/pnas.79.7.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES