Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):7275–7279. doi: 10.1128/jvi.70.10.7275-7279.1996

Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression.

L R Sorbara 1, F Maldarelli 1, G Chamoun 1, B Schilling 1, S Chokekijcahi 1, L Staudt 1, H Mitsuya 1, I A Simpson 1, S L Zeichner 1
PMCID: PMC190788  PMID: 8794382

Abstract

A clone obtained from a differential display screen for cellular genes with altered expression during human immunodeficiency virus (HIV) infection matched the sequence for the human GLUT3 facilitative glucose transporter, a high-velocity-high-affinity facilitative transporter commonly expressed in neurons of the central nervous system. Northern (RNA) analysis showed that GLUT3 expression increased during infection. Flow cytometry showed that GLUT3 protein expression increased specifically in the HIV-infected cells; this increase correlated with increased 2-deoxyglucose transport in the HIV-infected culture. HIV infection therefore leads to increased expression of a glucose transporter normally expressed at high levels in other cell types and a corresponding increase in glucose transport activity. If HIV infection places increased metabolic demands on the host cell, changes in the expression of a cellular gene that plays an important role in cellular metabolism might provide a more favorable environment for viral replication.

Full Text

The Full Text of this article is available as a PDF (225.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. I., Burant C. F., Takeda J., Gould G. W. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993 Sep 15;268(26):19161–19164. [PubMed] [Google Scholar]
  2. Birnbaum M. J., Haspel H. C., Rosen O. M. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science. 1987 Mar 20;235(4795):1495–1498. doi: 10.1126/science.3029870. [DOI] [PubMed] [Google Scholar]
  3. Chakrabarti R., Jung C. Y., Lee T. P., Liu H., Mookerjee B. K. Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol. 1994 Mar 15;152(6):2660–2668. [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Dimitrov D. S., Willey R. L., Sato H., Chang L. J., Blumenthal R., Martin M. A. Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol. 1993 Apr;67(4):2182–2190. doi: 10.1128/jvi.67.4.2182-2190.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckhart W., Weber M. Uptake of 2-deoxyglucose by BALB-3T3 cells: changes after polyoma infection. Virology. 1974 Sep;61(1):223–228. doi: 10.1016/0042-6822(74)90256-6. [DOI] [PubMed] [Google Scholar]
  7. Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner-Racz K., Haase A. T. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993 Mar 25;362(6418):359–362. doi: 10.1038/362359a0. [DOI] [PubMed] [Google Scholar]
  8. Flier J. S., Mueckler M. M., Usher P., Lodish H. F. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science. 1987 Mar 20;235(4795):1492–1495. doi: 10.1126/science.3103217. [DOI] [PubMed] [Google Scholar]
  9. Garry R. F., Bostick D. A., Ulug E. T. Sindbis virus infection increases hexose transport in quiescent cells. Virology. 1986 Dec;155(2):378–391. doi: 10.1016/0042-6822(86)90201-1. [DOI] [PubMed] [Google Scholar]
  10. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haber R. S., Weinstein S. P., O'Boyle E., Morgello S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology. 1993 Jun;132(6):2538–2543. doi: 10.1210/endo.132.6.8504756. [DOI] [PubMed] [Google Scholar]
  12. Halicka H. D., Ardelt B., Li X., Melamed M. M., Darzynkiewicz Z. 2-Deoxy-D-glucose enhances sensitivity of human histiocytic lymphoma U937 cells to apoptosis induced by tumor necrosis factor. Cancer Res. 1995 Jan 15;55(2):444–449. [PubMed] [Google Scholar]
  13. Hatanaka M., Hanafusa H. Analysis of a functional change in membrane in the process of cell transformation by Rous sarcoma virus; alteration in the characteristics of sugar transport. Virology. 1970 Aug;41(4):647–652. doi: 10.1016/0042-6822(70)90429-0. [DOI] [PubMed] [Google Scholar]
  14. Hatanaka M., Huebner R. J., Gilden R. V. Alterations in the characteristics of sugar uptake by mouse cells transformed by murine sarcoma viruses. J Natl Cancer Inst. 1969 Nov;43(5):1091–1096. [PubMed] [Google Scholar]
  15. Hiraki Y., Rosen O. M., Birnbaum M. J. Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem. 1988 Sep 25;263(27):13655–13662. [PubMed] [Google Scholar]
  16. Isselbacher K. J. Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture. Proc Natl Acad Sci U S A. 1972 Mar;69(3):585–589. doi: 10.1073/pnas.69.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kan O., Baldwin S. A., Whetton A. D. Apoptosis is regulated by the rate of glucose transport in an interleukin 3 dependent cell line. J Exp Med. 1994 Sep 1;180(3):917–923. doi: 10.1084/jem.180.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kawai S., Hanafusa H. The effects of reciprocal changes in temperature on the transformed state of cells infected with a rous sarcoma virus mutant. Virology. 1971 Nov;46(2):470–479. doi: 10.1016/0042-6822(71)90047-x. [DOI] [PubMed] [Google Scholar]
  19. Kayano T., Fukumoto H., Eddy R. L., Fan Y. S., Byers M. G., Shows T. B., Bell G. I. Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. J Biol Chem. 1988 Oct 25;263(30):15245–15248. [PubMed] [Google Scholar]
  20. Klip A., Tsakiridis T., Marette A., Ortiz P. A. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J. 1994 Jan;8(1):43–53. doi: 10.1096/fasebj.8.1.8299889. [DOI] [PubMed] [Google Scholar]
  21. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  22. Macho A., Castedo M., Marchetti P., Aguilar J. J., Decaudin D., Zamzami N., Girard P. M., Uriel J., Kroemer G. Mitochondrial dysfunctions in circulating T lymphocytes from human immunodeficiency virus-1 carriers. Blood. 1995 Oct 1;86(7):2481–2487. [PubMed] [Google Scholar]
  23. Maher F., Davies-Hill T. M., Simpson I. A. Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J. 1996 May 1;315(Pt 3):827–831. doi: 10.1042/bj3150827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maher F., Vannucci S. J., Simpson I. A. Glucose transporter proteins in brain. FASEB J. 1994 Oct;8(13):1003–1011. doi: 10.1096/fasebj.8.13.7926364. [DOI] [PubMed] [Google Scholar]
  25. Martin G. S., Venuta S., Weber M., Rubin H. Temperature-dependent alterations in sugar transport in cells infected by a temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2739–2741. doi: 10.1073/pnas.68.11.2739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murakami T., Nishiyama T., Shirotani T., Shinohara Y., Kan M., Ishii K., Kanai F., Nakazuru S., Ebina Y. Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J Biol Chem. 1992 May 5;267(13):9300–9306. [PubMed] [Google Scholar]
  27. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
  28. Weber M. J. Hexose transport in normal and in Rous sarcoma virus-transformed cells. J Biol Chem. 1973 May 10;248(9):2978–2983. [PubMed] [Google Scholar]
  29. Werner H., Adamo M., Lowe W. L., Jr, Roberts C. T., Jr, LeRoith D. Developmental regulation of rat brain/Hep G2 glucose transporter gene expression. Mol Endocrinol. 1989 Feb;3(2):273–279. doi: 10.1210/mend-3-2-273. [DOI] [PubMed] [Google Scholar]
  30. White M. K., Rall T. B., Weber M. J. Differential regulation of glucose transporter isoforms by the src oncogene in chicken embryo fibroblasts. Mol Cell Biol. 1991 Sep;11(9):4448–4454. doi: 10.1128/mcb.11.9.4448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. White M. K., Weber M. J. The src oncogene can regulate a human glucose transporter expressed in chicken embryo fibroblasts. Mol Cell Biol. 1990 Apr;10(4):1301–1306. doi: 10.1128/mcb.10.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. White M. K., Weber M. J. Transformation by the src oncogene alters glucose transport into rat and chicken cells by different mechanisms. Mol Cell Biol. 1988 Jan;8(1):138–144. doi: 10.1128/mcb.8.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Young A. T., Dahl J., Hausdorff S. F., Bauer P. H., Birnbaum M. J., Benjamin T. L. Phosphatidylinositol 3-kinase binding to polyoma virus middle tumor antigen mediates elevation of glucose transport by increasing translocation of the GLUT1 transporter. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11613–11617. doi: 10.1073/pnas.92.25.11613. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES