Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Dec;107(4):1088–1091. doi: 10.1111/j.1476-5381.1992.tb13411.x

Pterins inhibit nitric oxide synthase activity in rat alveolar macrophages.

P G Jorens 1, F J van Overveld 1, H Bult 1, P A Vermeire 1, A G Herman 1
PMCID: PMC1907912  PMID: 1281717

Abstract

1. The synthesis of nitrite and citrulline from L-arginine by immune-stimulated rat alveolar macrophages and the modulation of this synthesis were studied. 2,4-Diamino-6-hydroxypyrimidine (DAHP), 6R-5,6,7,8-tetrahydro-L-biopterin (BH4) and L-sepiapterin were potent inhibitors of the recombinant interferon-gamma induced production of nitrogen oxides in intact cultured cells with I50 values for BH4 and L-sepiapterin of approximately 10 microM. They were equally effective in inhibiting the induced production of citrulline. This inhibitory effect was concentration-dependent for all three modulators investigated. 2. The inhibitory effects were not dependent on incubation times of either 24 or 48 h, on the immune-stimulus used (lipopolysaccharide, interferon-gamma), or whether these stimuli were added during or after the induction period. 3. Pterin-6-carboxylic acid (PCA), which cannot be converted into BH4, and methotrexate (MTX), which inhibits dihydrofolatereductase but not de novo biosynthesis of BH4, did not change the production of nitrite. 4. The data indicate that DAHP, an inhibitor of the de novo biosynthesis of the co-factor BH4, blocks the nitric oxide synthase activity in intact cells. Since the pterins BH4 and L-sepiapterin blocked the L-arginine dependent production of nitrite and citrulline, the activity of nitric oxide synthase in phagocytic cells may be regulated by metabolic endproducts of the de novo biosynthesis of BH4.

Full text

PDF
1088

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Mills C. D., Henry W. L., Jr, Caldwell M. D. Regulation of macrophage physiology by L-arginine: role of the oxidative L-arginine deiminase pathway. J Immunol. 1989 Dec 1;143(11):3641–3646. [PubMed] [Google Scholar]
  2. Albina J. E., Mills C. D., Henry W. L., Jr, Caldwell M. D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J Immunol. 1990 May 15;144(10):3877–3880. [PubMed] [Google Scholar]
  3. Bellahsene Z., Dhondt J. L., Farriaux J. P. Guanosine triphosphate cyclohydrolase activity in rat tissues. Biochem J. 1984 Jan 1;217(1):59–65. doi: 10.1042/bj2170059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billiar T. R., Curran R. D., Stuehr D. J., West M. A., Bentz B. G., Simmons R. L. An L-arginine-dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med. 1989 Apr 1;169(4):1467–1472. doi: 10.1084/jem.169.4.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gross S. S., Stuehr D. J., Aisaka K., Jaffe E. A., Levi R., Griffith O. W. Macrophage and endothelial cell nitric oxide synthesis: cell-type selective inhibition by NG-aminoarginine, NG-nitroarginine and NG-methylarginine. Biochem Biophys Res Commun. 1990 Jul 16;170(1):96–103. doi: 10.1016/0006-291x(90)91245-n. [DOI] [PubMed] [Google Scholar]
  6. Gál E. M., Nelson J. M., Sherman A. D. Biopterin. III. Purification and characterization of enzymes involved in the cerebral synthesis of 7,8-dihydrobiopterin. Neurochem Res. 1978 Feb;3(1):69–88. doi: 10.1007/BF00964361. [DOI] [PubMed] [Google Scholar]
  7. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  8. Jorens P. G., Van Overveld F. J., Bult H., Vermeire P. A., Herman A. G. L-arginine-dependent production of nitrogen oxides by rat pulmonary macrophages. Eur J Pharmacol. 1991 Aug 6;200(2-3):205–209. doi: 10.1016/0014-2999(91)90573-9. [DOI] [PubMed] [Google Scholar]
  9. Keller R., Geiges M., Keist R. L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res. 1990 Mar 1;50(5):1421–1425. [PubMed] [Google Scholar]
  10. Kilbourn R., Lopez-Berestein G. Protease inhibitors block the macrophage-mediated inhibition of tumor cell mitochondrial respiration. J Immunol. 1990 Feb 1;144(3):1042–1045. [PubMed] [Google Scholar]
  11. Knowles R. G., Salter M., Brooks S. L., Moncada S. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1042–1048. doi: 10.1016/0006-291x(90)91551-3. [DOI] [PubMed] [Google Scholar]
  12. Kwon N. S., Nathan C. F., Stuehr D. J. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem. 1989 Dec 5;264(34):20496–20501. [PubMed] [Google Scholar]
  13. McCall T. B., Feelisch M., Palmer R. M., Moncada S. Identification of N-iminoethyl-L-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells. Br J Pharmacol. 1991 Jan;102(1):234–238. doi: 10.1111/j.1476-5381.1991.tb12159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nichol C. A., Smith G. K., Duch D. S. Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem. 1985;54:729–764. doi: 10.1146/annurev.bi.54.070185.003501. [DOI] [PubMed] [Google Scholar]
  15. Schmidt H. H., Nau H., Wittfoht W., Gerlach J., Prescher K. E., Klein M. M., Niroomand F., Böhme E. Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol. 1988 Sep 13;154(2):213–216. doi: 10.1016/0014-2999(88)90101-x. [DOI] [PubMed] [Google Scholar]
  16. Shen R. S., Alam A., Zhang Y. X. Inhibition of GTP cyclohydrolase I by pterins. Biochim Biophys Acta. 1988 Apr 14;965(1):9–15. doi: 10.1016/0304-4165(88)90144-4. [DOI] [PubMed] [Google Scholar]
  17. Sibille Y., Reynolds H. Y. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis. 1990 Feb;141(2):471–501. doi: 10.1164/ajrccm/141.2.471. [DOI] [PubMed] [Google Scholar]
  18. Stuehr D. J., Fasehun O. A., Kwon N. S., Gross S. S., Gonzalez J. A., Levi R., Nathan C. F. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 1991 Jan;5(1):98–103. doi: 10.1096/fasebj.5.1.1703974. [DOI] [PubMed] [Google Scholar]
  19. Stuehr D. J., Kwon N. S., Gross S. S., Thiel B. A., Levi R., Nathan C. F. Synthesis of nitrogen oxides from L-arginine by macrophage cytosol: requirement for inducible and constitutive components. Biochem Biophys Res Commun. 1989 Jun 15;161(2):420–426. doi: 10.1016/0006-291x(89)92615-6. [DOI] [PubMed] [Google Scholar]
  20. Stuehr D. J., Kwon N. S., Nathan C. F. FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun. 1990 Apr 30;168(2):558–565. doi: 10.1016/0006-291x(90)92357-6. [DOI] [PubMed] [Google Scholar]
  21. Stuehr D. J., Marletta M. A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987 Jul 15;139(2):518–525. [PubMed] [Google Scholar]
  22. Tayeh M. A., Marletta M. A. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989 Nov 25;264(33):19654–19658. [PubMed] [Google Scholar]
  23. Werner-Felmayer G., Werner E. R., Fuchs D., Hausen A., Reibnegger G., Wachter H. Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts. J Exp Med. 1990 Dec 1;172(6):1599–1607. doi: 10.1084/jem.172.6.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Werner E. R., Werner-Felmayer G., Fuchs D., Hausen A., Reibnegger R., Yim J. J., Wachter H. Biochemistry and function of pteridine synthesis in human and murine macrophages. Pathobiology. 1991;59(4):276–279. doi: 10.1159/000163662. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES