Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Dec;107(4):991–995. doi: 10.1111/j.1476-5381.1992.tb13396.x

BK1 and BK2 bradykinin receptors in the rat duodenum smooth muscle.

T Feres 1, A C Paiva 1, T B Paiva 1
PMCID: PMC1907942  PMID: 1334758

Abstract

1. The dual action of bradykinin (relaxation and contraction) on the rat duodenum was investigated by studying its effect on adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels in cultured duodenal smooth muscle cells, and the effects of apamin on the isolated muscle responses to agonists and antagonists of BK1 and BK2 receptors. 2. No change was observed in the cyclic AMP content of cultured cells incubated with up to 100 nM bradykinin. 3. Apamin (100-500 nM) inhibited the relaxant component and enhanced the contractile component of the responses to bradykinin and to the BK2-specific analogue [Thi5,8,D-Phe7]-bradykinin. 4. Apamin (100-500 nM) did not affect the contractile response of stretched duodenum preparation to the BK1-specific agonist des-Arg9-bradykinin. 5. The BK2 antagonist, [D-Arg0Hyp3Thi5,8,D-Phe7]-bradykinin, at a concentration which completely inhibited the relaxant response to bradykinin and to [Thi5,8,D-Phe7]-bradykinin, also prevented the contraction in response to either agonist in the presence of apamin. 6. Our results demonstrate two populations of bradykinin receptors in rat duodenum: a BK2 subtype responsible for the biphasic response of the non-stretched duodenum, and a BK1 subtype responsible for the contractile effect on the stretched tissue.

Full text

PDF
991

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonio A. The relaxing effect of bradykinin on intestinal smooth muscle. Br J Pharmacol Chemother. 1968 Jan;32(1):78–86. doi: 10.1111/j.1476-5381.1968.tb00431.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boschcov P., Paiva A. C., Paiva T. B., Shimuta S. I. Further evidence for the existence of two receptor sites for bradykinin responsible for the diphasic effect in the rat isolated duodenum. Br J Pharmacol. 1984 Oct;83(2):591–600. doi: 10.1111/j.1476-5381.1984.tb16523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown D. A., Higashida H. Inositol 1,4,5-trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma x rat glioma hybrid cells. J Physiol. 1988 Mar;397:185–207. doi: 10.1113/jphysiol.1988.sp016995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Den Hertog A., Nelemans A., Van den Akker J. The multiple action of bradykinin on smooth muscle of guinea-pig taenia caeci. Eur J Pharmacol. 1988 Jul 14;151(3):357–363. doi: 10.1016/0014-2999(88)90531-6. [DOI] [PubMed] [Google Scholar]
  5. Feres T., Vianna L. M., Paiva A. C., Paiva T. B. Effect of treatment with vitamin D3 on the responses of the duodenum of spontaneously hypertensive rats to bradykinin and to potassium. Br J Pharmacol. 1992 Apr;105(4):881–884. doi: 10.1111/j.1476-5381.1992.tb09072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hall J. M., Morton I. K. Bradykinin B2 receptor evoked K+ permeability increase mediates relaxation in the rat duodenum. Eur J Pharmacol. 1991 Feb 7;193(2):231–238. doi: 10.1016/0014-2999(91)90041-n. [DOI] [PubMed] [Google Scholar]
  8. Hugues M., Romey G., Duval D., Vincent J. P., Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1308–1312. doi: 10.1073/pnas.79.4.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karlström L. Mechanisms in bile salt-induced secretion in the small intestine. An experimental study in rats and cats. Acta Physiol Scand Suppl. 1986;549:1–48. [PubMed] [Google Scholar]
  10. Lang F., Paulmichl M., Pfeilschifter J., Friedrich F., Wöll E., Waldegger S., Ritter M., Tschernko E. Cellular mechanisms of bradykinin-induced hyperpolarization in renal epitheloid MDCK-cells. Biochim Biophys Acta. 1991 Apr 9;1073(3):600–608. doi: 10.1016/0304-4165(91)90236-a. [DOI] [PubMed] [Google Scholar]
  11. Liebmann C., Reissmann S., Robberecht P., Arold H. Bradykinin action in the rat duodenum: receptor binding and influence on the cyclic AMP system. Biomed Biochim Acta. 1987;46(6):469–478. [PubMed] [Google Scholar]
  12. Miasiro N., Paiva T. B., Pereira C. C., Shimuta S. I. Reactivity to bradykinin and potassium of the isolated duodenum from rats with genetic and renal hypertension. Br J Pharmacol. 1985 Jul;85(3):639–646. doi: 10.1111/j.1476-5381.1985.tb10559.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nabika T., Nara Y., Yamori Y., Lovenberg W., Endo J. Angiotensin II and phorbol ester enhance isoproterenol- and vasoactive intestinal peptide (VIP)-induced cyclic AMP accumulation in vascular smooth muscle cells. Biochem Biophys Res Commun. 1985 Aug 30;131(1):30–36. doi: 10.1016/0006-291x(85)91765-6. [DOI] [PubMed] [Google Scholar]
  14. Paiva A. C., Paiva T. B., Pereira C. C., Shimuta S. I. Selectivity of bradykinin analogues for receptors mediating contraction and relaxation of the rat duodenum. Br J Pharmacol. 1989 Sep;98(1):206–210. doi: 10.1111/j.1476-5381.1989.tb16883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pereira C. C., Paiva T. B. Characterization of the receptors responsible for the diphasic effect of bradykinin in rat duodenum. Braz J Med Biol Res. 1989;22(9):1137–1140. [PubMed] [Google Scholar]
  16. Ransom R. W., Goodman C. B., Young G. S. Bradykinin stimulation of phosphoinositide hydrolysis in guinea-pig ileum longitudinal muscle. Br J Pharmacol. 1992 Apr;105(4):919–924. doi: 10.1111/j.1476-5381.1992.tb09078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  18. Regoli D., Drapeau G., Rovero P., Dion S., D'Orléans-Juste P., Barabé J. The actions of kinin antagonists on B1 and B2 receptor systems. Eur J Pharmacol. 1986 Apr 9;123(1):61–65. doi: 10.1016/0014-2999(86)90687-4. [DOI] [PubMed] [Google Scholar]
  19. Schachter M., Uchida Y., Longridge D. J., Labedz T., Whalley E. T., Vavrek R. J., Stewart J. M. New synthetic antagonists of bradykinin. Br J Pharmacol. 1987 Dec;92(4):851–855. doi: 10.1111/j.1476-5381.1987.tb11390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shimuta S. I., Kanashiro C. A., Oshiro M. E., Paiva T. B., Paiva A. C. Angiotensin II desensitization and Ca++ and Na+ fluxes in cultured intestinal smooth muscle cells. J Pharmacol Exp Ther. 1990 Jun;253(3):1215–1221. [PubMed] [Google Scholar]
  21. Stewart J. M., Vavrek R. J. Bradykinin competitive antagonists for classical kinin systems. Adv Exp Med Biol. 1986;198(Pt A):537–542. doi: 10.1007/978-1-4684-5143-6_71. [DOI] [PubMed] [Google Scholar]
  22. Tovey K. C., Oldham K. G., Whelan J. A. A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive protein binding technique. Clin Chim Acta. 1974 Nov 8;56(3):221–234. doi: 10.1016/0009-8981(74)90133-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES