Abstract
1. The 5-HT3 receptor-mediated cation influx into N1E-115 mouse neuroblastoma cells has been studied by the use of the organic cation [14C]-guanidinium. 2. 5-Hydroxytryptamine (5-HT, 30 microM) caused a time-dependent influx of [14C]-guanidinium which, in contrast to the influx elicited by veratridine (100 microM), was not inhibited by tetrodotoxin (TTX, 10 microM). The 5-HT-induced influx was potentiated by substance P and inhibited by ondansetron. 3. 5-HT and the selective 5-HT3 receptor agonists, m-chloro-phenylbiguanide, phenylbiguanide and 2-methyl-5-HT caused bell-shaped concentration-response curves; the rank order of potency was m-chloro-phenylbiguanide > 5-HT > phenylbiguanide = 2-methyl-5-HT. Among these agonists, 5-HT elicited the highest influx of [14C]-guanidinium. 5-Methoxytryptamine, an agonist at 5-HT4 receptors, showed no effect. 4. The [14C]-guanidinium influx induced by 100 microM 5-HT was not affected by methysergide (10 microM) and ketanserin (10 microM) but was inhibited by 5-HT3 receptor antagonists with the following rank order of potency: ICS 205-930 > ondansetron > MDL 72222 >> metoclopramide. 5. The 5-HT-induced [14C]-guanidinium influx was increased in the absence of Ca2+ and/or Na+ and by a reduction of the temperature from 36 degrees to 20 degrees C. 6. Preincubation with 5-HT (100 microM) caused a time-dependent and rapidly reversible decrease of the 5-HT-induced [14C]-guanidinium influx. 7. It is concluded that [14C]-guanidinium influx measurement in N1E-115 cells is a convenient method to study properties of the cation channel of the 5-HT3 receptor.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boess F. G., Sepúlveda M. I., Lummis S. C., Martin I. L. 5-HT3 receptors in NG108-15 neuroblastoma x glioma cells: effect of the novel agonist 1-(m-chlorophenyl)-biguanide. Neuropharmacology. 1992 Jun;31(6):561–564. doi: 10.1016/0028-3908(92)90188-u. [DOI] [PubMed] [Google Scholar]
- Butler A., Hill J. M., Ireland S. J., Jordan C. C., Tyers M. B. Pharmacological properties of GR38032F, a novel antagonist at 5-HT3 receptors. Br J Pharmacol. 1988 Jun;94(2):397–412. doi: 10.1111/j.1476-5381.1988.tb11542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catterall W. A., Nirenberg M. Sodium uptake associated with activation of action potential ionophores of cultured neuroblastoma and muscle cells. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3759–3763. doi: 10.1073/pnas.70.12.3759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Derkach V., Surprenant A., North R. A. 5-HT3 receptors are membrane ion channels. Nature. 1989 Jun 29;339(6227):706–709. doi: 10.1038/339706a0. [DOI] [PubMed] [Google Scholar]
- Fozard J. R. MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1984 May;326(1):36–44. doi: 10.1007/BF00518776. [DOI] [PubMed] [Google Scholar]
- Frazer A., Maayani S., Wolfe B. B. Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol. 1990;30:307–348. doi: 10.1146/annurev.pa.30.040190.001515. [DOI] [PubMed] [Google Scholar]
- Göthert M. 5-Hydroxytryptamine receptors. An example for the complexity of chemical transmission of information in the brain. Arzneimittelforschung. 1992 Feb;42(2A):238–246. [PubMed] [Google Scholar]
- Hoyer D., Neijt H. C. Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG108-15 neuroblastoma-glioma cells. Eur J Pharmacol. 1987 Nov 10;143(2):291–292. doi: 10.1016/0014-2999(87)90547-4. [DOI] [PubMed] [Google Scholar]
- Hoyer D., Neijt H. C. Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol Pharmacol. 1988 Mar;33(3):303–309. [PubMed] [Google Scholar]
- Kilpatrick G. J., Butler A., Burridge J., Oxford A. W. 1-(m-chlorophenyl)-biguanide, a potent high affinity 5-HT3 receptor agonist. Eur J Pharmacol. 1990 Jun 21;182(1):193–197. doi: 10.1016/0014-2999(90)90513-6. [DOI] [PubMed] [Google Scholar]
- Kilpatrick G. J., Jones B. J., Tyers M. B. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature. 1987 Dec 24;330(6150):746–748. doi: 10.1038/330746a0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lambert J. J., Peters J. A., Hales T. G., Dempster J. The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br J Pharmacol. 1989 May;97(1):27–40. doi: 10.1111/j.1476-5381.1989.tb11920.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lummis S. C., Kilpatrick G. J., Martin I. L. Characterization of 5-HT3 receptors in intact N1E-115 neuroblastoma cells. Eur J Pharmacol. 1990 Sep 18;189(2-3):223–227. doi: 10.1016/0922-4106(90)90026-t. [DOI] [PubMed] [Google Scholar]
- Neijt H. C., Plomp J. J., Vijverberg H. P. Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells. J Physiol. 1989 Apr;411:257–269. doi: 10.1113/jphysiol.1989.sp017572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neijt H. C., te Duits I. J., Vijverberg H. P. Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacology. 1988 Mar;27(3):301–307. doi: 10.1016/0028-3908(88)90048-2. [DOI] [PubMed] [Google Scholar]
- Newberry N. R., Sprosen T. S., Watkins C. J., Leslie R. A., Grahame-Smith D. G. AS-5370 potently antagonizes 5-HT3 receptor-mediated responses on NG108-15 cells and on the rat vagus. Eur J Pharmacol. 1992 Aug 14;219(1):135–140. doi: 10.1016/0014-2999(92)90591-q. [DOI] [PubMed] [Google Scholar]
- Peroutka S. J. 5-Hydroxytryptamine receptor subtypes. Pharmacol Toxicol. 1990 Nov;67(5):373–383. doi: 10.1111/j.1600-0773.1990.tb00848.x. [DOI] [PubMed] [Google Scholar]
- Peters J. A., Hales T. G., Lambert J. J. Divalent cations modulate 5-HT3 receptor-induced currents in N1E-115 neuroblastoma cells. Eur J Pharmacol. 1988 Jul 14;151(3):491–495. doi: 10.1016/0014-2999(88)90550-x. [DOI] [PubMed] [Google Scholar]
- Peters J. A., Lambert J. J. Electrophysiology of 5-HT3 receptors in neuronal cell lines. Trends Pharmacol Sci. 1989 May;10(5):172–175. doi: 10.1016/0165-6147(89)90230-7. [DOI] [PubMed] [Google Scholar]
- Reiser G., Hamprecht B. Substance P and serotonin act synergistically to activate a cation permeability in a neuronal cell line. Brain Res. 1989 Feb 6;479(1):40–48. doi: 10.1016/0006-8993(89)91333-4. [DOI] [PubMed] [Google Scholar]
- Reith M. E. [14C]guanidinium ion influx into Na+ channel preparations from mouse cerebral cortex. Eur J Pharmacol. 1990 Jan 23;188(1):33–41. doi: 10.1016/0922-4106(90)90245-s. [DOI] [PubMed] [Google Scholar]
- Richardson B. P., Engel G., Donatsch P., Stadler P. A. Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature. 1985 Jul 11;316(6024):126–131. doi: 10.1038/316126a0. [DOI] [PubMed] [Google Scholar]
- Waeber C., Hoyer D., Palacios J. M. 5-hydroxytryptamine3 receptors in the human brain: autoradiographic visualization using [3H]ICS 205-930. Neuroscience. 1989;31(2):393–400. doi: 10.1016/0306-4522(89)90382-5. [DOI] [PubMed] [Google Scholar]
- Wallis D. I., North R. A. The action of 5-hydroxytryptamine on single neurones of the rabbit superior cervical ganglion. Neuropharmacology. 1978 Dec;17(12):1023–1028. doi: 10.1016/0028-3908(78)90028-x. [DOI] [PubMed] [Google Scholar]
- Wallis D., Nash H. Relative activities of substances related to 5-hydroxytryptamine as depolarizing agents of superior cervical ganglion cells. Eur J Pharmacol. 1981 Mar 26;70(3):381–392. doi: 10.1016/0014-2999(81)90171-0. [DOI] [PubMed] [Google Scholar]
- Yakel J. L., Jackson M. B. 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron. 1988 Sep;1(7):615–621. doi: 10.1016/0896-6273(88)90111-0. [DOI] [PubMed] [Google Scholar]
- Yakel J. L., Shao X. M., Jackson M. B. The selectivity of the channel coupled to the 5-HT3 receptor. Brain Res. 1990 Nov 12;533(1):46–52. doi: 10.1016/0006-8993(90)91793-g. [DOI] [PubMed] [Google Scholar]
