Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Feb;108(2):526–533. doi: 10.1111/j.1476-5381.1993.tb12835.x

Modulation of central noradrenergic function by RS-15385-197.

W S Redfern 1, A C MacKinnon 1, C M Brown 1, A B Martin 1, A T Kilpatrick 1, R U Clague 1, M Spedding 1
PMCID: PMC1907981  PMID: 8095421

Abstract

1. RS-15385-197, a highly potent and selective alpha 2-adrenoceptor antagonist, was examined in a variety of in vitro and in vivo functional tests to assess the selectivity of its interaction with central noradrenergic neurones in the rat. 2. In hypothalamic slices, RS-15385-197 was potent in augmenting K(+)-evoked release of [3H]-noradrenaline, with an EC50 of 9 nM. Idazoxan and yohimbine showed 100 fold less activity. This was due to its antagonist action at presynaptic alpha 2-adrenoceptors, as RS-15385-197 (10 microM), did not directly release [3H]-noradrenaline from cortical slices unlike reserpine (10 microM), and did not inhibit noradrenaline re-uptake into cortical synaptosomes. 3. In vivo, RS-15385-197 (0.5 mg kg-1, p.o.) increased levels of 3-methoxy-4-hydroxy-phenylglycol (MHPG) in the cerebral cortex without modifying levels of 5-hydroxyindoleacetic acid (5-HIAA). This dose, but not a lower dose (0.1 mg kg-1, p.o.) caused beta-adrenoceptor down-regulation in the cortex when administered once daily for 14 days whereas 5-HT2 receptor number was unaltered, indicating a selective effect on noradrenergic transmission. 4. Selective depletion of cortical 5-HT by administration of p-chlorophenylalanine (PCPA; 100 mg kg-1, i.p. for 14 days) or 5,7-dihydroxytryptamine (5,7-DHT; 150 micrograms i.c.v.) prevented the beta-adrenoceptor down-regulation caused by RS-15385-197, indicating that a tonic 5-hydroxytryptaminergic input was required for it to elicit beta-adrenoceptor down-regulation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
526

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Björklund A., Baumgarten H. G., Rensch A. 5,7-Dihydroxytryptamine: improvement of its selectivity for serotonin neurons in the CNS by pretreatment with desipramine. J Neurochem. 1975 Apr;24(4):833–835. [PubMed] [Google Scholar]
  2. Blackburn T. P., Foster G. A., Greenwood D. T., Howe R. Effects of viloxazine, its optical isomers and its major metabolites on biogenic amine uptake mechanisms in vitro and in vivo. Eur J Pharmacol. 1978 Dec 1;52(3-4):367–374. doi: 10.1016/0014-2999(78)90291-1. [DOI] [PubMed] [Google Scholar]
  3. Boyajian C. L., Loughlin S. E., Leslie F. M. Anatomical evidence for alpha-2 adrenoceptor heterogeneity: differential autoradiographic distributions of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther. 1987 Jun;241(3):1079–1091. [PubMed] [Google Scholar]
  4. Brown C. M., MacKinnon A. C., McGrath J. C., Spedding M., Kilpatrick A. T. Alpha 2-adrenoceptor subtypes and imidazoline-like binding sites in the rat brain. Br J Pharmacol. 1990 Apr;99(4):803–809. doi: 10.1111/j.1476-5381.1990.tb13010.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown C. M., MacKinnon A. C., Redfern W. S., Hicks P. E., Kilpatrick A. T., Small C., Ramcharan M., Clague R. U., Clark R. D., MacFarlane C. B. The pharmacology of RS-15385-197, a potent and selective alpha 2-adrenoceptor antagonist. Br J Pharmacol. 1993 Feb;108(2):516–525. doi: 10.1111/j.1476-5381.1993.tb12834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brunello N., Barbaccia M. L., Chuang D. M., Costa E. Down-regulation of beta-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons. Neuropharmacology. 1982 Nov;21(11):1145–1149. doi: 10.1016/0028-3908(82)90172-1. [DOI] [PubMed] [Google Scholar]
  7. Brüning G., Kaulen P., Baumgarten H. G. Quantitative autoradiographic localization of alpha 2-antagonist binding sites in rat brain using [3H]idazoxan. Neurosci Lett. 1987 Dec 29;83(3):333–337. doi: 10.1016/0304-3940(87)90110-8. [DOI] [PubMed] [Google Scholar]
  8. Charney D. S., Heninger G. R., Redmond D. E., Jr Yohimbine induced anxiety and increased noradrenergic function in humans: effects of diazepam and clonidine. Life Sci. 1983 Jul 4;33(1):19–29. doi: 10.1016/0024-3205(83)90707-5. [DOI] [PubMed] [Google Scholar]
  9. Charney D. S., Menkes D. B., Heninger G. R. Receptor sensitivity and the mechanism of action of antidepressant treatment. Implications for the etiology and therapy of depression. Arch Gen Psychiatry. 1981 Oct;38(10):1160–1180. doi: 10.1001/archpsyc.1981.01780350094011. [DOI] [PubMed] [Google Scholar]
  10. Clark R. D., Repke D. B., Berger J., Nelson J. T., Kilpatrick A. T., Brown C. M., MacKinnon A. C., Clague R. U., Spedding M. Structure-affinity relationships of 12-sulfonyl derivatives of 5,8,8a,9,10,11,12,12a,13,13a-decahydro-6H-isoquino[2,1-g][1 ,6] naphthyridines at alpha-adrenoceptors. J Med Chem. 1991 Feb;34(2):705–717. doi: 10.1021/jm00106a036. [DOI] [PubMed] [Google Scholar]
  11. Clark R. D., Repke D. B., Kilpatrick A. T., Brown C. M., MacKinnon A. C., Clague R. U., Spedding M. (8a alpha,12a alpha,13a alpha)-5,8,8a,9,10,11,12,12a,13,13a-decahydro- 3-methoxy-12-(methylsulfonyl)-6H-isoquino[2,1-g][1,6]naphthyridi ne, a potent and highly selective alpha 2-adrenoceptor antagonist. J Med Chem. 1989 Sep;32(9):2034–2036. doi: 10.1021/jm00129a002. [DOI] [PubMed] [Google Scholar]
  12. Convents A., Convents D., De Backer J. P., De Keyser J., Vauquelin G. High affinity binding of 3H rauwolscine and 3H RX781094 to alpha 2 adrenergic receptors and non-stereoselective sites in human and rabbit brain cortex membranes. Biochem Pharmacol. 1989 Feb 1;38(3):455–463. doi: 10.1016/0006-2952(89)90385-7. [DOI] [PubMed] [Google Scholar]
  13. Cross J. A., Horton R. W. Effects of chronic oral administration of the antidepressants, desmethylimipramine and zimelidine on rat cortical GABAB binding sites: a comparison with 5-HT2 binding site changes. Br J Pharmacol. 1988 Feb;93(2):331–336. doi: 10.1111/j.1476-5381.1988.tb11438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GRAY E. G., WHITTAKER V. P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat. 1962 Jan;96:79–88. [PMC free article] [PubMed] [Google Scholar]
  15. Goldberg M. R., Robertson D. Yohimbine: a pharmacological probe for study of the alpha 2-adrenoreceptor. Pharmacol Rev. 1983 Sep;35(3):143–180. [PubMed] [Google Scholar]
  16. HOLMBERG G., GERSHON S. Autonomic and psychic effects of yohimbine hydrochloride. Psychopharmacologia. 1961;2:93–106. doi: 10.1007/BF00592678. [DOI] [PubMed] [Google Scholar]
  17. Janowsky A., Okada F., Manier D. H., Applegate C. D., Sulser F., Steranka L. R. Role of serotonergic input in the regulation of the beta-adrenergic receptor-coupled adenylate cyclase system. Science. 1982 Nov 26;218(4575):900–901. doi: 10.1126/science.6291152. [DOI] [PubMed] [Google Scholar]
  18. Johnson R. W., Reisine T., Spotnitz S., Wiech N., Ursillo R., Yamamura H. I. Effects of desipramine and yohimbine on alpha 2- and beta-adrenoreceptor sensitivity. Eur J Pharmacol. 1980 Oct 3;67(1):123–127. doi: 10.1016/0014-2999(80)90019-9. [DOI] [PubMed] [Google Scholar]
  19. Kilpatrick A. T., Goodwin K., Brown C. M. Characterisation of sodium-dependent uptake of 5-hydroxytryptamine into guinea-pig brain. Neuropharmacology. 1986 Sep;25(9):1037–1041. doi: 10.1016/0028-3908(86)90199-1. [DOI] [PubMed] [Google Scholar]
  20. Langer S. Z. Presynaptic regulation of catecholamine release. Biochem Pharmacol. 1974 Jul 1;23(13):1793–1800. doi: 10.1016/0006-2952(74)90187-7. [DOI] [PubMed] [Google Scholar]
  21. MacDonald E., Ruskoaho H., Scheinin M., Virtanen R. Therapeutic applications of drugs acting on alpha-adrenoceptors. Ann Clin Res. 1988;20(5):298–310. [PubMed] [Google Scholar]
  22. MacKinnon A. C., Kilpatrick A. T., Kenny B. A., Spedding M., Brown C. M. [3H]-RS-15385-197, a selective and high affinity radioligand for alpha 2-adrenoceptors: implications for receptor classification. Br J Pharmacol. 1992 Aug;106(4):1011–1018. doi: 10.1111/j.1476-5381.1992.tb14449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Manier D. H., Okada F., Janowsky A. J., Steranka L. R., Sulser F. Serotonergic denervation changes binding characteristics of beta-adrenoceptors in rat cortex. Eur J Pharmacol. 1982 Dec 17;86(1):137–139. doi: 10.1016/0014-2999(82)90413-7. [DOI] [PubMed] [Google Scholar]
  24. McGrath J. C., Brown C. M., Wilson V. G. Alpha-adrenoceptors: a critical review. Med Res Rev. 1989 Oct-Dec;9(4):407–533. doi: 10.1002/med.2610090403. [DOI] [PubMed] [Google Scholar]
  25. Mefford I. N. Application of high performance liquid chromatography with electrochemical detection to neurochemical analysis: measurement of catecholamines, serotonin and metabolites in rat brain. J Neurosci Methods. 1981 Feb;3(3):207–224. doi: 10.1016/0165-0270(81)90056-x. [DOI] [PubMed] [Google Scholar]
  26. Middlemiss D. N., Spedding M. A functional correlate for the dihydropyridine binding site in rat brain. Nature. 1985 Mar 7;314(6006):94–96. doi: 10.1038/314094a0. [DOI] [PubMed] [Google Scholar]
  27. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  28. Scott J. A., Crews F. T. Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment. J Pharmacol Exp Ther. 1983 Mar;224(3):640–646. [PubMed] [Google Scholar]
  29. Sharp T., Bramwell S. R., Grahame-Smith D. G. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol. 1989 Feb;96(2):283–290. doi: 10.1111/j.1476-5381.1989.tb11815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Starke K. Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol. 1977;77:1–124. doi: 10.1007/BFb0050157. [DOI] [PubMed] [Google Scholar]
  31. Tricklebank M. D., Forler C., Fozard J. R. The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol. 1984 Nov 13;106(2):271–282. doi: 10.1016/0014-2999(84)90714-3. [DOI] [PubMed] [Google Scholar]
  32. Unnerstall J. R., Kopajtic T. A., Kuhar M. J. Distribution of alpha 2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res. 1984 Mar;319(1):69–101. doi: 10.1016/0165-0173(84)90030-4. [DOI] [PubMed] [Google Scholar]
  33. Vetulani J., Sulser F. Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature. 1975 Oct 9;257(5526):495–496. doi: 10.1038/257495a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES