Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Feb;108(2):422–430. doi: 10.1111/j.1476-5381.1993.tb12820.x

Actions of agonists of metabotropic glutamate receptors on synaptic transmission and transmitter release in the olfactory cortex.

G G Collins 1
PMCID: PMC1907988  PMID: 7680593

Abstract

1. The effects of agonists of metabotropic glutamate receptors on the evoked N-wave complex in slices of mouse olfactory cortex have been studied: most experiments were carried out using slices perfused with Mg(2+)-free solution to which 10 microM of either 6,7-dinitroquinoxaline-2,3-dione or 6-cyano-7-nitroquinoxaline-2,3-dione was applied. 2. Following agonist washout, a slowly developing, long lasting potentiation of the complex occurred which was confined to the N-methyl-D-aspartate (NMDA) receptor-mediated component of the potential. The relative agonist potencies were 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 5-250 microM) = quisqualate (5-50 microM) > 1RS,3RS-cis-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD, 25-1000 microM) > L-glutamate (0.25-2.5 mM); NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) and L-aspartate were inactive. 3. Potentiation of the NMDA receptor-mediated component by 1S,3R-ACPD (0.1 mM) was non-competitively antagonised by S-(+)- but not R-(-)-2-amino-3-phosphonopropionate (AP3, 0.125 mM), equally by D-(-) and L-(+)-2-amino-4-phosphonobutyrate (0.25 mM) and also by the protein kinase C inhibitors sphingosine, (25 microM), sangivamycin (25 microM) and 5-(isoquinolinylsulphonyl)-3-methylpiperazine (50 microM). 4. In a series of input-output experiments, 1S,3R-ACPD (0.1 mM) reversibly reduced the latency to peak of the NMDA receptor-mediated component at submaximal stimulus intensities, an effect blocked by S-(+)-AP3 (0.125 mM).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
422

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aniksztejn L., Bregestovski P., Ben-Ari Y. Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur J Pharmacol. 1991 Dec 3;205(3):327–328. doi: 10.1016/0014-2999(91)90921-c. [DOI] [PubMed] [Google Scholar]
  2. Anson J., Collins G. G. Possible presynaptic actions of 2-amino-4-phosphonobutyrate in rat olfactory cortex. Br J Pharmacol. 1987 Aug;91(4):753–761. doi: 10.1111/j.1476-5381.1987.tb11273.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aramori I., Nakanishi S. Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron. 1992 Apr;8(4):757–765. doi: 10.1016/0896-6273(92)90096-v. [DOI] [PubMed] [Google Scholar]
  4. Baird J. G., Challiss R. A., Nahorski S. R. Role for ionotropic and metabotropic receptors in quisqualate-stimulated inositol polyphosphate accumulation in rat cerebral cortex. Mol Pharmacol. 1991 Jun;39(6):745–753. [PubMed] [Google Scholar]
  5. Baskys A., Malenka R. C. Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol. 1991 Dec;444:687–701. doi: 10.1113/jphysiol.1991.sp018901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Birch P. J., Grossman C. J., Hayes A. G. 6,7-Dinitro-quinoxaline-2,3-dion and 6-nitro,7-cyano-quinoxaline-2,3-dion antagonise responses to NMDA in the rat spinal cord via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol. 1988 Oct 26;156(1):177–180. doi: 10.1016/0014-2999(88)90163-x. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., Galvan M. Responses of the guinea-pig isolated olfactory cortex slice to gamma-aminobutyric acid recorded with extracellular electrodes. Br J Pharmacol. 1979 Feb;65(2):347–353. doi: 10.1111/j.1476-5381.1979.tb07836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  9. Challiss R. A., Batty I. H., Nahorski S. R. Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem Biophys Res Commun. 1988 Dec 15;157(2):684–691. doi: 10.1016/s0006-291x(88)80304-8. [DOI] [PubMed] [Google Scholar]
  10. Charpak S., Gähwiler B. H., Do K. Q., Knöpfel T. Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature. 1990 Oct 25;347(6295):765–767. doi: 10.1038/347765a0. [DOI] [PubMed] [Google Scholar]
  11. Clark R. M., Collins G. G. The release of endogenous amino acids from the rat visual cortex. J Physiol. 1976 Nov;262(2):383–400. doi: 10.1113/jphysiol.1976.sp011600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Collingridge G. L., Lester R. A. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev. 1989 Jun;41(2):143–210. [PubMed] [Google Scholar]
  13. Collins G. G. Pharmacological evidence that NMDA receptors contribute to mono- and di-synaptic potentials in slices of mouse olfactory cortex. Neuropharmacology. 1991 Jun;30(6):547–555. doi: 10.1016/0028-3908(91)90072-j. [DOI] [PubMed] [Google Scholar]
  14. Collins G. G., Richards W. J. Pharmacological evidence that protein kinase C modulates monosynaptic excitations in the olfactory cortex. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):114–122. doi: 10.1007/BF00195067. [DOI] [PubMed] [Google Scholar]
  15. Collins G. G., Surtees L. "Desensitization" of excitatory amino acid responses in the rat olfactory cortex. Neuropharmacology. 1986 Mar;25(3):231–240. doi: 10.1016/0028-3908(86)90245-5. [DOI] [PubMed] [Google Scholar]
  16. Crepel F., Daniel H., Hemart N., Jaillard D. Effects of ACPD and AP3 on parallel-fibre-mediated EPSPs of Purkinje cells in cerebellar slices in vitro. Exp Brain Res. 1991;86(2):402–406. doi: 10.1007/BF00228964. [DOI] [PubMed] [Google Scholar]
  17. Desai M. A., Conn P. J. Excitatory effects of ACPD receptor activation in the hippocampus are mediated by direct effects on pyramidal cells and blockade of synaptic inhibition. J Neurophysiol. 1991 Jul;66(1):40–52. doi: 10.1152/jn.1991.66.1.40. [DOI] [PubMed] [Google Scholar]
  18. Gilbey M. P., Wooster M. J. Mono-and multi-synaptic origin of the early surface-negative wave recorded from guinea-pig olfactory cortex in vitro. J Physiol. 1979 Aug;293:153–172. doi: 10.1113/jphysiol.1979.sp012883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Haberly L. B., Bower J. M. Olfactory cortex: model circuit for study of associative memory? Trends Neurosci. 1989 Jul;12(7):258–264. doi: 10.1016/0166-2236(89)90025-8. [DOI] [PubMed] [Google Scholar]
  20. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  21. Hu G. Y., Storm J. F. Excitatory amino acids acting on metabotropic glutamate receptors broaden the action potential in hippocampal neurons. Brain Res. 1991 Dec 24;568(1-2):339–344. doi: 10.1016/0006-8993(91)91423-x. [DOI] [PubMed] [Google Scholar]
  22. Irving A. J., Schofield J. G., Watkins J. C., Sunter D. C., Collingridge G. L. 1S,3R-ACPD stimulates and L-AP3 blocks Ca2+ mobilization in rat cerebellar neurons. Eur J Pharmacol. 1990 Sep 21;186(2-3):363–365. doi: 10.1016/0014-2999(90)90462-f. [DOI] [PubMed] [Google Scholar]
  23. Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
  24. Kanter E. D., Haberly L. B. NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro. Brain Res. 1990 Aug 13;525(1):175–179. doi: 10.1016/0006-8993(90)91337-g. [DOI] [PubMed] [Google Scholar]
  25. Kemp J. A., Foster A. C., Leeson P. D., Priestley T., Tridgett R., Iversen L. L., Woodruff G. N. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6547–6550. doi: 10.1073/pnas.85.17.6547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kinney G. A., Slater N. T. Potentiation of mossy fiber-evoked EPSPs in turtle cerebellar Purkinje cells by the metabotropic glutamate receptor agonist 1S,3R-ACPD. J Neurophysiol. 1992 Apr;67(4):1006–1008. doi: 10.1152/jn.1992.67.4.1006. [DOI] [PubMed] [Google Scholar]
  27. Loomis C. R., Bell R. M. Sangivamycin, a nucleoside analogue, is a potent inhibitor of protein kinase C. J Biol Chem. 1988 Feb 5;263(4):1682–1692. [PubMed] [Google Scholar]
  28. Lovinger D. M. Trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action. Neurosci Lett. 1991 Aug 5;129(1):17–21. doi: 10.1016/0304-3940(91)90710-b. [DOI] [PubMed] [Google Scholar]
  29. Manzoni O. J., Finiels-Marlier F., Sassetti I., Blockaert J., le Peuch C., Sladeczek F. A. The glutamate receptor of the Qp-type activates protein kinase C and is regulated by protein kinase C. Neurosci Lett. 1990 Feb 5;109(1-2):146–151. doi: 10.1016/0304-3940(90)90553-l. [DOI] [PubMed] [Google Scholar]
  30. Mayer M. L., Westbrook G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. 1987;28(3):197–276. doi: 10.1016/0301-0082(87)90011-6. [DOI] [PubMed] [Google Scholar]
  31. McBain C. J., Kleckner N. W., Wyrick S., Dingledine R. Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol. 1989 Oct;36(4):556–565. [PubMed] [Google Scholar]
  32. McGuinness N., Anwyl R., Rowan M. The effects of trans-ACPD on long-term potentiation in the rat hippocampal slice. Neuroreport. 1991 Nov;2(11):688–690. doi: 10.1097/00001756-199111000-00014. [DOI] [PubMed] [Google Scholar]
  33. McGuinness N., Anwyl R., Rowan M. Trans-ACPD enhances long-term potentiation in the hippocampus. Eur J Pharmacol. 1991 May 17;197(2-3):231–232. doi: 10.1016/0014-2999(91)90529-y. [DOI] [PubMed] [Google Scholar]
  34. Monaghan D. T., Bridges R. J., Cotman C. W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365–402. doi: 10.1146/annurev.pa.29.040189.002053. [DOI] [PubMed] [Google Scholar]
  35. Murphy S. N., Miller R. J. A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8737–8741. doi: 10.1073/pnas.85.22.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Murphy S. N., Miller R. J. Two distinct quisqualate receptors regulate Ca2+ homeostasis in hippocampal neurons in vitro. Mol Pharmacol. 1989 May;35(5):671–680. [PubMed] [Google Scholar]
  37. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  38. Otani S., Ben-Ari Y. Metabotropic receptor-mediated long-term potentiation in rat hippocampal slices. Eur J Pharmacol. 1991 Dec 3;205(3):325–326. doi: 10.1016/0014-2999(91)90920-l. [DOI] [PubMed] [Google Scholar]
  39. Pickles H. G., Simmonds M. A. Field potentials, inhibition and the effect of pentobarbitone in the rat olfactory cortex slice. J Physiol. 1978 Feb;275:135–148. doi: 10.1113/jphysiol.1978.sp012181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pickles H. G., Simmonds M. A. Possible presynaptic inhibition in rat olfactory cortex. J Physiol. 1976 Sep;260(2):475–486. doi: 10.1113/jphysiol.1976.sp011526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Poncet M. F., Damase-Michel C., Tavernier G., Tran M. A., Berlan M., Montastruc J. L., Montastruc P. Changes in plasma catecholamine and neuropeptide Y levels after sympathetic activation in dogs. Br J Pharmacol. 1992 Jan;105(1):181–183. doi: 10.1111/j.1476-5381.1992.tb14232.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schoepp D. D., Johnson B. G., Smith E. C., McQuaid L. A. Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid. Mol Pharmacol. 1990 Aug;38(2):222–228. [PubMed] [Google Scholar]
  43. Schoepp D. D., Johnson B. G., True R. A., Monn J. A. Comparison of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD)- and 1R,3S-ACPD-stimulated brain phosphoinositide hydrolysis. Eur J Pharmacol. 1991 Aug 14;207(4):351–353. doi: 10.1016/0922-4106(91)90010-f. [DOI] [PubMed] [Google Scholar]
  44. Schoepp D., Bockaert J., Sladeczek F. Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci. 1990 Dec;11(12):508–515. doi: 10.1016/0165-6147(90)90052-a. [DOI] [PubMed] [Google Scholar]
  45. Sladeczek F., Pin J. P., Récasens M., Bockaert J., Weiss S. Glutamate stimulates inositol phosphate formation in striatal neurones. Nature. 1985 Oct 24;317(6039):717–719. doi: 10.1038/317717a0. [DOI] [PubMed] [Google Scholar]
  46. Sladeczek F., Récasens M., Bockaert J. A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci. 1988 Dec;11(12):545–549. doi: 10.1016/0166-2236(88)90183-x. [DOI] [PubMed] [Google Scholar]
  47. Stratton K. R., Worley P. F., Baraban J. M. Excitation of hippocampal neurons by stimulation of glutamate Qp receptors. Eur J Pharmacol. 1989 Dec 7;173(2-3):235–237. doi: 10.1016/0014-2999(89)90529-3. [DOI] [PubMed] [Google Scholar]
  48. Stratton K. R., Worley P. F., Baraban J. M. Pharmacological characterization of phosphoinositide-linked glutamate receptor excitation of hippocampal neurons. Eur J Pharmacol. 1990 Sep 21;186(2-3):357–361. doi: 10.1016/0014-2999(90)90461-e. [DOI] [PubMed] [Google Scholar]
  49. Sugiyama H., Ito I., Hirono C. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature. 1987 Feb 5;325(6104):531–533. doi: 10.1038/325531a0. [DOI] [PubMed] [Google Scholar]
  50. Zheng F., Gallagher J. P. Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron. 1992 Jul;9(1):163–172. doi: 10.1016/0896-6273(92)90231-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES