Abstract
1. We have investigated the effects of diazoxide (a sulphonamide derivative) and cibenzoline (a class I antiarrhythmic drug) on ATP-sensitive K+ currents in guinea-pig ventricular cells, using whole-cell clamp techniques. 2. Diazoxide (50 microM) produced a marked shortening of action potential duration which was antagonized by 1 microM glibenclamide, an ATP-sensitive K+ channel blocker. 3. Diazoxide (50 microM) increased the quasi-steady state outward current elicited by a ramp voltage protocol (-20 mV s-1) at potentials positive to about -70 mV. This effect was completely prevented in the presence of glibenclamide (1 microM), thereby suggesting that diazoxide opens ATP-sensitive K+ channels. 4. Cibenzoline (5 microM) depressed the diazoxide-induced increases in the outward current and the pretreatment with this agent prevented the development of the diazoxide-induced outward current. 5. Cibenzoline (10 microM) reversed the 2,4-dinitrophenol (50 microM)-induced shortening of the action potential duration partially but significantly. 6. These results suggest that diazoxide activates ATP-sensitive K+ channels of guinea-pig ventricular cells and that cibenzoline, at therapeutic concentrations, inhibits this channel.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arena J. P., Kass R. S. Enhancement of potassium-sensitive current in heart cells by pinacidil. Evidence for modulation of the ATP-sensitive potassium channel. Circ Res. 1989 Aug;65(2):436–445. doi: 10.1161/01.res.65.2.436. [DOI] [PubMed] [Google Scholar]
- Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
- Ashford M. L., Sturgess N. C., Trout N. J., Gardner N. J., Hales C. N. Adenosine-5'-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 1988 Aug;412(3):297–304. doi: 10.1007/BF00582512. [DOI] [PubMed] [Google Scholar]
- Belles B., Hescheler J., Trube G. Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide. Pflugers Arch. 1987 Aug;409(6):582–588. doi: 10.1007/BF00584657. [DOI] [PubMed] [Google Scholar]
- Belles B., Malécot C. O., Hescheler J., Trautwein W. "Run-down" of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflugers Arch. 1988 Apr;411(4):353–360. doi: 10.1007/BF00587713. [DOI] [PubMed] [Google Scholar]
- Canal M., Flouvat B., Tremblay D., Dufour A. Pharmacokinetics in man of a new antiarrhythmic drug, cibenzoline. Eur J Clin Pharmacol. 1983;24(4):509–515. doi: 10.1007/BF00609894. [DOI] [PubMed] [Google Scholar]
- Cole W. C., McPherson C. D., Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res. 1991 Sep;69(3):571–581. doi: 10.1161/01.res.69.3.571. [DOI] [PubMed] [Google Scholar]
- Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
- Dangman K. H. Cardiac effects of cibenzoline. J Cardiovasc Pharmacol. 1984 Mar-Apr;6(2):300–311. doi: 10.1097/00005344-198403000-00015. [DOI] [PubMed] [Google Scholar]
- Deutsch N., Klitzner T. S., Lamp S. T., Weiss J. N. Activation of cardiac ATP-sensitive K+ current during hypoxia: correlation with tissue ATP levels. Am J Physiol. 1991 Sep;261(3 Pt 2):H671–H676. doi: 10.1152/ajpheart.1991.261.3.H671. [DOI] [PubMed] [Google Scholar]
- Dunne M. J., Illot M. C., Peterson O. H. Interaction of diazoxide, tolbutamide and ATP4- on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membr Biol. 1987;99(3):215–224. doi: 10.1007/BF01995702. [DOI] [PubMed] [Google Scholar]
- Escande D., Thuringer D., Leguern S., Cavero I. The potassium channel opener cromakalim (BRL 34915) activates ATP-dependent K+ channels in isolated cardiac myocytes. Biochem Biophys Res Commun. 1988 Jul 29;154(2):620–625. doi: 10.1016/0006-291x(88)90184-2. [DOI] [PubMed] [Google Scholar]
- Faivre J. F., Findlay I. Effects of tolbutamide, glibenclamide and diazoxide upon action potentials recorded from rat ventricular muscle. Biochim Biophys Acta. 1989 Aug 21;984(1):1–5. doi: 10.1016/0005-2736(89)90334-9. [DOI] [PubMed] [Google Scholar]
- Fosset M., De Weille J. R., Green R. D., Schmid-Antomarchi H., Lazdunski M. Antidiabetic sulfonylureas control action potential properties in heart cells via high affinity receptors that are linked to ATP-dependent K+ channels. J Biol Chem. 1988 Jun 15;263(17):7933–7936. [PubMed] [Google Scholar]
- Gachot B. A., Bezier M., Cherrier J. F., Daubeze J. Cibenzoline and hypoglycaemia. Lancet. 1988 Jul 30;2(8605):280–280. doi: 10.1016/s0140-6736(88)92570-6. [DOI] [PubMed] [Google Scholar]
- Goldberg I. J., Brown L. K., Rayfield E. J. Disopyramide (Norpace)-induced hypoglycemia. Am J Med. 1980 Sep;69(3):463–466. doi: 10.1016/0002-9343(80)90020-0. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Henquin J. C., Charles S., Nenquin M., Mathot F., Tamagawa T. Diazoxide and D600 inhibition of insulin release. Distinct mechanisms explain the specificity for different stimuli. Diabetes. 1982 Sep;31(9):776–783. doi: 10.2337/diab.31.9.776. [DOI] [PubMed] [Google Scholar]
- Henquin J. C., Meissner H. P. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B cells. Biochem Pharmacol. 1982 Apr 1;31(7):1407–1415. doi: 10.1016/0006-2952(82)90036-3. [DOI] [PubMed] [Google Scholar]
- Hilleman D. E., Mohiuddin S. M., Ahmed I. S., Dahl J. M. Cibenzoline-induced hypoglycemia. Drug Intell Clin Pharm. 1987 Jan;21(1 Pt 1):38–40. doi: 10.1177/10600280870211p104. [DOI] [PubMed] [Google Scholar]
- Hiraoka M., Fan Z. Activation of ATP-sensitive outward K+ current by nicorandil (2-nicotinamidoethyl nitrate) in isolated ventricular myocytes. J Pharmacol Exp Ther. 1989 Jul;250(1):278–285. [PubMed] [Google Scholar]
- Holck M., Osterrieder W. Inhibition of the myocardial Ca2+ inward current by the class 1 antiarrhythmic agent, cibenzoline. Br J Pharmacol. 1986 Apr;87(4):705–711. doi: 10.1111/j.1476-5381.1986.tb14588.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isenberg G., Vereecke J., van der Heyden G., Carmeliet E. The shortening of the action potential by DNP in guinea-pig ventricular myocytes is mediated by an increase of a time-independent K conductance. Pflugers Arch. 1983 Jun 1;397(4):251–259. doi: 10.1007/BF00580257. [DOI] [PubMed] [Google Scholar]
- Kantor P. F., Coetzee W. A., Carmeliet E. E., Dennis S. C., Opie L. H. Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulfonylurea. Circ Res. 1990 Feb;66(2):478–485. doi: 10.1161/01.res.66.2.478. [DOI] [PubMed] [Google Scholar]
- Kotake H., Matsuoka S., Ogino K., Takami T., Hasegawa J., Mashiba H. Electrophysiological study of cibenzoline in voltage-clamped rabbit sinoatrial node preparations. J Pharmacol Exp Ther. 1987 Jun;241(3):982–986. [PubMed] [Google Scholar]
- Kozlowski R. Z., Hales C. N., Ashford M. L. Dual effects of diazoxide on ATP-K+ currents recorded from an insulin-secreting cell line. Br J Pharmacol. 1989 Aug;97(4):1039–1050. doi: 10.1111/j.1476-5381.1989.tb12560.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masse C., Cazes M., Sassine A. Effects of cibenzoline, a novel antiarrhythmic drug, on action potential and transmembrane currents in frog atrial muscle. Arch Int Pharmacodyn Ther. 1984 Jun;269(2):219–235. [PubMed] [Google Scholar]
- Millar J. S., Vaughan Williams E. M. Effects on rabbit nodal, atrial, ventricular and Purkinje cell potentials of a new antiarrhythmic drug, cibenzoline, which protects against action potential shortening in hypoxia. Br J Pharmacol. 1982 Mar;75(3):469–478. doi: 10.1111/j.1476-5381.1982.tb09163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura S., Kiyosue T., Arita M. Glucose reverses 2,4-dinitrophenol induced changes in action potentials and membrane currents of guinea pig ventricular cells via enhanced glycolysis. Cardiovasc Res. 1989 Apr;23(4):286–294. doi: 10.1093/cvr/23.4.286. [DOI] [PubMed] [Google Scholar]
- Nakaya H., Takeda Y., Tohse N., Kanno M. Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium. Br J Pharmacol. 1991 May;103(1):1019–1026. doi: 10.1111/j.1476-5381.1991.tb12294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
- Noma A., Shibasaki T. Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol. 1985 Jun;363:463–480. doi: 10.1113/jphysiol.1985.sp015722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen O. H., Dunne M. J. Regulation of K+ channels plays a crucial role in the control of insulin secretion. Pflugers Arch. 1989;414 (Suppl 1):S115–S120. doi: 10.1007/BF00582259. [DOI] [PubMed] [Google Scholar]
- Phillips R. E., Looareesuwan S., White N. J., Chanthavanich P., Karbwang J., Supanaranond W., Turner R. C., Warrell D. A. Hypoglycaemia and antimalarial drugs: quinidine and release of insulin. Br Med J (Clin Res Ed) 1986 May 17;292(6531):1319–1321. doi: 10.1136/bmj.292.6531.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pruitt A. W., Dayton P. G., Patterson J. H. Disposition of diazoxide in children. Clin Pharmacol Ther. 1973 Jan-Feb;14(1):73–82. doi: 10.1002/cpt197314173. [DOI] [PubMed] [Google Scholar]
- Spruce A. E., Standen N. B., Stanfield P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature. 1985 Aug 22;316(6030):736–738. doi: 10.1038/316736a0. [DOI] [PubMed] [Google Scholar]
- Sturgess N. C., Ashford M. L., Cook D. L., Hales C. N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985 Aug 31;2(8453):474–475. doi: 10.1016/s0140-6736(85)90403-9. [DOI] [PubMed] [Google Scholar]
- Taniguchi J., Kokubun S., Noma A., Irisawa H. Spontaneously active cells isolated from the sino-atrial and atrio-ventricular nodes of the rabbit heart. Jpn J Physiol. 1981;31(4):547–558. doi: 10.2170/jjphysiol.31.547. [DOI] [PubMed] [Google Scholar]
- Trube G., Hescheler J. Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflugers Arch. 1984 Jun;401(2):178–184. doi: 10.1007/BF00583879. [DOI] [PubMed] [Google Scholar]
- Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]
- Undrovinas A. I., Burnashev N., Eroshenko D., Fleidervish I., Starmer C. F., Makielski J. C., Rosenshtraukh L. V. Quinidine blocks adenosine 5'-triphosphate-sensitive potassium channels in heart. Am J Physiol. 1990 Nov;259(5 Pt 2):H1609–H1612. doi: 10.1152/ajpheart.1990.259.5.H1609. [DOI] [PubMed] [Google Scholar]
- Wilde A. A., Escande D., Schumacher C. A., Thuringer D., Mestre M., Fiolet J. W., Janse M. J. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel. Circ Res. 1990 Oct;67(4):835–843. doi: 10.1161/01.res.67.4.835. [DOI] [PubMed] [Google Scholar]
- Zünkler B. J., Lenzen S., Männer K., Panten U., Trube G. Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells. Naunyn Schmiedebergs Arch Pharmacol. 1988 Feb;337(2):225–230. doi: 10.1007/BF00169252. [DOI] [PubMed] [Google Scholar]
