Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Oct;70(10):7341–7346. doi: 10.1128/jvi.70.10.7341-7346.1996

Infection of primary CD4+ and CD8+ T lymphocytes by Epstein-Barr virus enhances human immunodeficiency virus expression.

M Guan 1, R D Zhang 1, B Wu 1, E E Henderson 1
PMCID: PMC190801  PMID: 8794395

Abstract

CD4+ and CD8+ T lymphocytes purified from normal adult donors by flow cytometry could be infected with Epstein-Barr virus (EBV) as measured by the accumulation of components of the EBV replicative cycle, viral DNA and viral transcripts encoding EBER1 and BRLF1. EBV infection resulted in enhanced replication of human immunodeficiency virus type 1 (HIV-1) IIIB in CD4+ lymphocytes as measured by accumulation of reverse transcriptase and formation of syncytia. Furthermore, a small percentage of CD8+ T cells became permissive after infection with EBV. Inactivation of transforming functions by irradiation with UV light greatly reduced the ability of EBV to enhance HIV-1 replication in T4+ T cell, suggesting that live virus is needed for enhancement. These results demonstrate a direct synergy between EBV and HIV-1 during coinfection of T cells in vitro and may explain the beneficial effect of acyclovir in combination with antiretroviral chemotherapy as well as the increased incidence of T-cell lymphomas associated with EBV in patients with AIDS.

Full Text

The Full Text of this article is available as a PDF (356.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos I., Hummel M., Kreschel C., Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995 Feb 1;85(3):744–750. [PubMed] [Google Scholar]
  2. Beisel C., Tanner J., Matsuo T., Thorley-Lawson D., Kezdy F., Kieff E. Two major outer envelope glycoproteins of Epstein-Barr virus are encoded by the same gene. J Virol. 1985 Jun;54(3):665–674. doi: 10.1128/jvi.54.3.665-674.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birkenbach M., Tong X., Bradbury L. E., Tedder T. F., Kieff E. Characterization of an Epstein-Barr virus receptor on human epithelial cells. J Exp Med. 1992 Nov 1;176(5):1405–1414. doi: 10.1084/jem.176.5.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks L., Yao Q. Y., Rickinson A. B., Young L. S. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol. 1992 May;66(5):2689–2697. doi: 10.1128/jvi.66.5.2689-2697.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen C. L., Sadler R. H., Walling D. M., Su I. J., Hsieh H. C., Raab-Traub N. Epstein-Barr virus (EBV) gene expression in EBV-positive peripheral T-cell lymphomas. J Virol. 1993 Oct;67(10):6303–6308. doi: 10.1128/jvi.67.10.6303-6308.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper D. A., Pehrson P. O., Pedersen C., Moroni M., Oksenhendler E., Rozenbaum W., Clumeck N., Faber V., Stille W., Hirschel B. The efficacy and safety of zidovudine alone or as cotherapy with acyclovir for the treatment of patients with AIDS and AIDS-related complex: a double-blind randomized trial. European-Australian Collaborative Group. AIDS. 1993 Feb;7(2):197–207. doi: 10.1097/00002030-199302000-00007. [DOI] [PubMed] [Google Scholar]
  7. Diaz J. J., Dodon M. D., Schaerer-Uthurralt N., Simonin D., Kindbeiter K., Gazzolo L., Madjar J. J. Post-transcriptional transactivation of human retroviral envelope glycoprotein expression by herpes simplex virus Us11 protein. Nature. 1996 Jan 18;379(6562):273–277. doi: 10.1038/379273a0. [DOI] [PubMed] [Google Scholar]
  8. Fingeroth J. D., Clabby M. L., Strominger J. D. Characterization of a T-lymphocyte Epstein-Barr virus/C3d receptor (CD21). J Virol. 1988 Apr;62(4):1442–1447. doi: 10.1128/jvi.62.4.1442-1447.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fischer E., Delibrias C., Kazatchkine M. D. Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes. J Immunol. 1991 Feb 1;146(3):865–869. [PubMed] [Google Scholar]
  10. Frade R., Barel M., Ehlin-Henriksson B., Klein G. gp140, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1490–1493. doi: 10.1073/pnas.82.5.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hedrick J. A., Watry D., Speiser C., O'Donnell P., Lambris J. D., Tsoukas C. D. Interaction between Epstein-Barr virus and a T cell line (HSB-2) via a receptor phenotypically distinct from complement receptor type 2. Eur J Immunol. 1992 May;22(5):1123–1131. doi: 10.1002/eji.1830220504. [DOI] [PubMed] [Google Scholar]
  12. Henderson E. E. Host cell reactivation of Epstein-Barr virus in normal and repair-defective leukocytes. Cancer Res. 1978 Oct;38(10):3256–3263. [PubMed] [Google Scholar]
  13. Henderson E. E., Yang J. Y., Zhang R. D., Bealer M. Altered HIV expression and EBV-induced transformation in coinfected PBLs and PBL subpopulations. Virology. 1991 May;182(1):186–198. doi: 10.1016/0042-6822(91)90662-u. [DOI] [PubMed] [Google Scholar]
  14. Holguin M. H., Kurtz C. B., Parker C. J., Weis J. J., Weis J. H. Loss of human CR1- and murine Crry-like exons in human CR2 transcripts due to CR2 gene mutations. J Immunol. 1990 Sep 15;145(6):1776–1781. [PubMed] [Google Scholar]
  15. Joab I., Triki H., de Saint Martin J., Perricaudet M., Nicolas J. C. Detection of anti-Epstein-Barr virus trans-activator (ZEBRA) antibodies in sera from patients with human immunodeficiency virus. J Infect Dis. 1991 Jan;163(1):53–56. doi: 10.1093/infdis/163.1.53. [DOI] [PubMed] [Google Scholar]
  16. Khanna R., Burrows S. R., Moss D. J. Immune regulation in Epstein-Barr virus-associated diseases. Microbiol Rev. 1995 Sep;59(3):387–405. doi: 10.1128/mr.59.3.387-405.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lin J. C. The Epstein-Barr virus DNA polymerase transactivates the human immunodeficiency virus type 1 5' long terminal repeat. Biochem Biophys Res Commun. 1993 Aug 31;195(1):242–249. doi: 10.1006/bbrc.1993.2036. [DOI] [PubMed] [Google Scholar]
  18. Martin D. R., Yuryev A., Kalli K. R., Fearon D. T., Ahearn J. M. Determination of the structural basis for selective binding of Epstein-Barr virus to human complement receptor type 2. J Exp Med. 1991 Dec 1;174(6):1299–1311. doi: 10.1084/jem.174.6.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moore M. D., Cooper N. R., Tack B. F., Nemerow G. R. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9194–9198. doi: 10.1073/pnas.84.24.9194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nemerow G. R., Mold C., Schwend V. K., Tollefson V., Cooper N. R. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol. 1987 May;61(5):1416–1420. doi: 10.1128/jvi.61.5.1416-1420.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paterson R. L., Kelleher C., Amankonah T. D., Streib J. E., Xu J. W., Jones J. F., Gelfand E. W. Model of Epstein-Barr virus infection of human thymocytes: expression of viral genome and impact on cellular receptor expression in the T-lymphoblastic cell line, HPB-ALL. Blood. 1995 Jan 15;85(2):456–464. [PubMed] [Google Scholar]
  22. Quinlivan E. B., Holley-Guthrie E., Mar E. C., Smith M. S., Kenney S. The Epstein-Barr virus BRLF1 immediate-early gene product transactivates the human immunodeficiency virus type 1 long terminal repeat by a mechanism which is enhancer independent. J Virol. 1990 Apr;64(4):1817–1820. doi: 10.1128/jvi.64.4.1817-1820.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sample J., Young L., Martin B., Chatman T., Kieff E., Rickinson A., Kieff E. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol. 1990 Sep;64(9):4084–4092. doi: 10.1128/jvi.64.9.4084-4092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sauvageau G., Stocco R., Kasparian S., Menezes J. Epstein-Barr virus receptor expression on human CD8+ (cytotoxic/suppressor) T lymphocytes. J Gen Virol. 1990 Feb;71(Pt 2):379–386. doi: 10.1099/0022-1317-71-2-379. [DOI] [PubMed] [Google Scholar]
  25. Schattner A., Hanuka N., Sarov B., Sarov I., Handzel Z., Bentwich Z. Sequential serological studies of homosexual men with and without HIV infection. Epstein-Barr virus activation preceding and following HIV seroconversion. Clin Exp Immunol. 1991 Aug;85(2):209–213. doi: 10.1111/j.1365-2249.1991.tb05706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tierney R. J., Steven N., Young L. S., Rickinson A. B. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol. 1994 Nov;68(11):7374–7385. doi: 10.1128/jvi.68.11.7374-7385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Titti F., Borsetti A., Federico M., Testa U., Meccia E., Samoggia P., Peschle C., Verani P., Rossi G. B. Extrachromosomal human immunodeficiency virus type 1 DNA forms in fresh peripheral blood lymphocytes and in two interleukin-2-independent T cell lines derived from peripheral blood lymphocytes of an asymptomatic seropositive subject. J Gen Virol. 1992 Dec;73(Pt 12):3087–3097. doi: 10.1099/0022-1317-73-12-3087. [DOI] [PubMed] [Google Scholar]
  28. Tsoukas C. D., Lambris J. D. Expression of EBV/C3d receptors on T cells: biological significance. Immunol Today. 1993 Feb;14(2):56–59. doi: 10.1016/0167-5699(93)90059-T. [DOI] [PubMed] [Google Scholar]
  29. Walker C. M., Erickson A. L., Hsueh F. C., Levy J. A. Inhibition of human immunodeficiency virus replication in acutely infected CD4+ cells by CD8+ cells involves a noncytotoxic mechanism. J Virol. 1991 Nov;65(11):5921–5927. doi: 10.1128/jvi.65.11.5921-5927.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Walker C. M., Moody D. J., Stites D. P., Levy J. A. CD8+ T lymphocyte control of HIV replication in cultured CD4+ cells varies among infected individuals. Cell Immunol. 1989 Apr 1;119(2):470–475. doi: 10.1016/0008-8749(89)90259-1. [DOI] [PubMed] [Google Scholar]
  31. Yoneda N., Tatsumi E., Kawanishi M., Teshigawara K., Masuda S., Yamamura Y., Inui A., Yoshino G., Oimomi M., Baba S. Detection of Epstein-Barr virus genome in benign polyclonal proliferative T cells of a young male patient. Blood. 1990 Jul 1;76(1):172–177. [PubMed] [Google Scholar]
  32. Youle M. S., Gazzard B. G., Johnson M. A., Cooper D. A., Hoy J. F., Busch H., Ruf B., Griffiths P. D., Stephenson S. L., Dancox M. Effects of high-dose oral acyclovir on herpesvirus disease and survival in patients with advanced HIV disease: a double-blind, placebo-controlled study. European-Australian Acyclovir Study Group. AIDS. 1994 May;8(5):641–649. doi: 10.1097/00002030-199405000-00010. [DOI] [PubMed] [Google Scholar]
  33. Zalani S., Holley-Guthrie E. A., Gutsch D. E., Kenney S. C. The Epstein-Barr virus immediate-early promoter BRLF1 can be activated by the cellular Sp1 transcription factor. J Virol. 1992 Dec;66(12):7282–7292. doi: 10.1128/jvi.66.12.7282-7292.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES