Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Mar;108(3):754–758. doi: 10.1111/j.1476-5381.1993.tb12873.x

Characterization and ontogeny of P1-purinoceptors on rat vas deferens.

S M Hourani 1, J Nicholls 1, B S Lee 1, E J Halfhide 1, I Kitchen 1
PMCID: PMC1908010  PMID: 8467361

Abstract

1. The P1-purinoceptors which mediate the inhibition by adenosine of nerve-mediated contraction of the rat vas deferens have been investigated by use of the agonists N6-cyclopentyladenosine (CPA) and 5'-N-ethylcarboxamidoadenosine (NECA) and the A1-selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). The ontogeny of the responses to adenosine and to the two co-transmitters which induce the contractions in this tissue, adenosine 5'-triphosphate (ATP) and noradrenaline (NA), have also been studied. 2. The order of potency for the adenosine agonists in inhibiting the nerve-mediated contractions was CPA = NECA > adenosine. Micromolar concentrations of DPCPX were required to antagonize the inhibition by adenosine and NECA of nerve-mediated responses, whereas the inhibitory effect of CPA was antagonized by nanomolar concentrations of the antagonist. 3. NECA and adenosine inhibited contractions induced by ATP (10 microM) or by NA (10 microM), NECA being at least ten fold more potent than adenosine, whereas CPA was inactive. Micromolar concentrations of DPCPX were required to antagonize the effect of adenosine on the contractions induced by ATP (10 microM). 4. Nerve-stimulated contractions could be observed in neonatal tissues from day 15 and increased with age, and could be inhibited by adenosine from this time, the potency of adenosine decreasing with age. Responses to ATP also appeared at day 15 and increased with age up to day 25, while responses to NA were present from day 10 (the earliest day tested) and decreased with age.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
754

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amobi N., Smith I. C. Effects of alpha,beta-methylene ATP on biphasic responses of rat vas deferens. Eur J Pharmacol. 1987 Jan 6;133(1):75–82. doi: 10.1016/0014-2999(87)90207-x. [DOI] [PubMed] [Google Scholar]
  2. Bruns R. F., Lu G. H., Pugsley T. A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol. 1986 Apr;29(4):331–346. [PubMed] [Google Scholar]
  3. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  4. Clanachan A. S., Johns A., Paton D. M. Presynaptic inhibitory actions of adenine nucleotides and adenosine on neurotransmission in the rat vas deferens. Neuroscience. 1977;2(4):597–602. doi: 10.1016/0306-4522(77)90056-2. [DOI] [PubMed] [Google Scholar]
  5. Kennedy C. P1- and P2-purinoceptor subtypes--an update. Arch Int Pharmacodyn Ther. 1990 Jan-Feb;303:30–50. [PubMed] [Google Scholar]
  6. MacDonald A., McGrath J. C. Post-natal development of functional neurotransmission in rat vas deferens. Br J Pharmacol. 1984 May;82(1):25–34. doi: 10.1111/j.1476-5381.1984.tb16438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Major T. C., Weishaar R. E., Taylor D. G. Two phases of contractile response in rat isolated vas deferens and their regulation by adenosine and alpha-receptors. Eur J Pharmacol. 1989 Aug 29;167(3):323–331. doi: 10.1016/0014-2999(89)90441-x. [DOI] [PubMed] [Google Scholar]
  8. McGrath J. C. Adrenergic and 'non-adrenergic' components in the contractile response of the vas deferens to a single indirect stimulus. J Physiol. 1978 Oct;283:23–39. doi: 10.1113/jphysiol.1978.sp012486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nicholls J., Hourani S. M., Kitchen I. Characterization of P1-purinoceptors on rat duodenum and urinary bladder. Br J Pharmacol. 1992 Mar;105(3):639–642. doi: 10.1111/j.1476-5381.1992.tb09032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nicholls J., Hourani S. M., Kitchen I. The ontogeny of purinoceptors in rat urinary bladder and duodenum. Br J Pharmacol. 1990 Aug;100(4):874–878. doi: 10.1111/j.1476-5381.1990.tb14107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Olsson R. A., Pearson J. D. Cardiovascular purinoceptors. Physiol Rev. 1990 Jul;70(3):761–845. doi: 10.1152/physrev.1990.70.3.761. [DOI] [PubMed] [Google Scholar]
  12. Paton D. M. Structure-activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on A1 receptors. J Auton Pharmacol. 1981 Sep;1(4):287–290. doi: 10.1111/j.1474-8673.1981.tb00457.x. [DOI] [PubMed] [Google Scholar]
  13. Ribeiro J. A., Sebastião A. M. Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol. 1986;26(3):179–209. doi: 10.1016/0301-0082(86)90015-8. [DOI] [PubMed] [Google Scholar]
  14. White T. D. Role of adenine compounds in autonomic neurotransmission. Pharmacol Ther. 1988;38(2):129–168. doi: 10.1016/0163-7258(88)90095-2. [DOI] [PubMed] [Google Scholar]
  15. von Kügelgen I., Starke K. Noradrenaline-ATP co-transmission in the sympathetic nervous system. Trends Pharmacol Sci. 1991 Sep;12(9):319–324. doi: 10.1016/0165-6147(91)90587-i. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES