Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Mar;108(3):613–621. doi: 10.1111/j.1476-5381.1993.tb12850.x

Protein kinase regulation of muscarinic receptor signalling in colonic smooth muscle.

L Zhang 1, I L Buxton 1
PMCID: PMC1908018  PMID: 8385529

Abstract

1. We have previously demonstrated that M2 and M3 muscarinic receptors coexist in the circular smooth muscle of canine proximal colon. Activation of receptors of the M2 subtype leads to inhibition of adenylyl cyclase activity through the GTP-binding protein, Gi, while M3 receptors are coupled to a pertussis toxin-insensitive GTP-binding protein and mediate phosphoinositide hydrolysis. 2. In the present study, the interactions between these second messenger systems were examined. Activation of either protein kinase C or adenosine 3':5'-cyclic monophosphate (cyclic AMP)-dependent protein kinase attenuated carbachol-stimulated phosphoinositide hydrolysis without affecting basal activity. Activation of both protein kinases produced greater attenuation of inositol 1,4,5-trisphosphate formation than activation of either kinase alone. 3. In contrast to its inhibitory effect on phosphoinositide hydrolysis, activation of protein kinase C had no effect on adenylyl cyclase activity. 4. Activation of protein kinase C by phorbol ester treatment resulted in the sequestration of M3 muscarinic receptors from the cell surface without effecting the M2 muscarinic receptor population. Sequestered M3 muscarinic receptors were not rapidly degraded. 5. In contrast, elevation of cellular cyclic AMP decreased the affinity of cell surface muscarinic receptors for an antagonist radioligand without affecting their density. 6. Muscarinic agonist binding was not affected by either activation of protein kinase C or elevation of cellular cyclic AMP. 7. These data support the notion of negative feedback by protein kinase C and cyclic AMP-dependent protein kinase on phosphoinositide hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdallah E. A., Forray C., el-Fakahany E. E. Relationship between the partial inhibition of muscarinic receptor-mediated phosphoinositide hydrolysis by phorbol esters and tetrodotoxin in rat cerebral cortex. Brain Res Mol Brain Res. 1990 Jun;8(1):1–7. doi: 10.1016/0169-328x(90)90002-u. [DOI] [PubMed] [Google Scholar]
  2. Blackmore P. F., Exton J. H. Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J Biol Chem. 1986 Aug 25;261(24):11056–11063. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brostrom M. A., Lin X. J., Cade C., Gmitter D., Brostrom C. O. Loss of a calcium requirement for protein synthesis in pituitary cells following thermal or chemical stress. J Biol Chem. 1989 Jan 25;264(3):1638–1643. [PubMed] [Google Scholar]
  5. Brown J. H., Goldstein D. Analysis of cardiac muscarinic receptors recognized selectively by nonquaternary but not by quaternary ligands. J Pharmacol Exp Ther. 1986 Aug;238(2):580–586. [PubMed] [Google Scholar]
  6. Candell L. M., Yun S. H., Tran L. L., Ehlert F. J. Differential coupling of subtypes of the muscarinic receptor to adenylate cyclase and phosphoinositide hydrolysis in the longitudinal muscle of the rat ileum. Mol Pharmacol. 1990 Nov;38(5):689–697. [PubMed] [Google Scholar]
  7. Ehlert F. J., Tran L. P. Regional distribution of M1, M2 and non-M1, non-M2 subtypes of muscarinic binding sites in rat brain. J Pharmacol Exp Ther. 1990 Dec;255(3):1148–1157. [PubMed] [Google Scholar]
  8. Feigenbaum P., El-Fakahany E. E. Regulation of muscarinic cholinergic receptor density in neuroblastoma cells by brief exposure to agonist: possible involvement in desensitization of receptor function. J Pharmacol Exp Ther. 1985 Apr;233(1):134–140. [PubMed] [Google Scholar]
  9. Fernandes L. B., Fryer A. D., Hirshman C. A. M2 muscarinic receptors inhibit isoproterenol-induced relaxation of canine airway smooth muscle. J Pharmacol Exp Ther. 1992 Jul;262(1):119–126. [PubMed] [Google Scholar]
  10. Fisher S. K. Recognition of muscarinic cholinergic receptors in human SK-N-SH neuroblastoma cells by quaternary and tertiary ligands is dependent upon temperature, cell integrity, and the presence of agonists. Mol Pharmacol. 1988 Apr;33(4):414–422. [PubMed] [Google Scholar]
  11. Galper J. B., Dziekan L. C., O'Hara D. S., Smith T. W. The biphasic response of muscarinic cholinergic receptors in cultured heart cells to agonists. Effects on receptor number and affinity in intact cells and homogenates. J Biol Chem. 1982 Sep 10;257(17):10344–10356. [PubMed] [Google Scholar]
  12. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haga T., Haga K., Berstein G., Nishiyama T., Uchiyama H., Ichiyama A. Molecular properties of muscarinic receptors. Trends Pharmacol Sci. 1988 Feb;Suppl:12–18. [PubMed] [Google Scholar]
  14. Hu J., Wang S. Z., el-Fakahany E. E. Effects of agonist efficacy on desensitization of phosphoinositide hydrolysis mediated by m1 and m3 muscarinic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther. 1991 Jun;257(3):938–945. [PubMed] [Google Scholar]
  15. Hulme E. C., Birdsall N. J., Buckley N. J. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol. 1990;30:633–673. doi: 10.1146/annurev.pa.30.040190.003221. [DOI] [PubMed] [Google Scholar]
  16. Imaizumi T., Watanabe Y., Yoshida H. Phosphorylation of Gi protein by cyclic AMP-dependent protein kinase inhibits its dissociation into alpha-subunits and beta gamma-subunits by Mg2+ and GTP gamma S. Eur J Pharmacol. 1991 Jul 12;207(3):189–194. doi: 10.1016/0922-4106(91)90030-l. [DOI] [PubMed] [Google Scholar]
  17. Kim U. H., Kim J. W., Rhee S. G. Phosphorylation of phospholipase C-gamma by cAMP-dependent protein kinase. J Biol Chem. 1989 Dec 5;264(34):20167–20170. [PubMed] [Google Scholar]
  18. Kraft A. S., Anderson W. B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature. 1983 Feb 17;301(5901):621–623. doi: 10.1038/301621a0. [DOI] [PubMed] [Google Scholar]
  19. Kwatra M. M., Ptasienski J., Hosey M. M. The porcine heart M2 muscarinic receptor: agonist-induced phosphorylation and comparison of properties with the chick heart receptor. Mol Pharmacol. 1989 May;35(5):553–558. [PubMed] [Google Scholar]
  20. Lai W. S., Rogers T. B., el-Fakahany E. E. Protein kinase C is involved in desensitization of muscarinic receptors induced by phorbol esters but not by receptor agonists. Biochem J. 1990 Apr 1;267(1):23–29. doi: 10.1042/bj2670023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lai W. S., el-Fakahany E. E. A selective effect of protein kinase C activation on pirenzepine high-affinity muscarinic receptors in a neuronal clone. Eur J Pharmacol. 1986 Sep 23;129(1-2):201–202. doi: 10.1016/0014-2999(86)90356-0. [DOI] [PubMed] [Google Scholar]
  22. Lai W. S., el-Fakahany E. E. Regulation of [3H]phorbol-12,13-dibutyrate binding sites in mouse neuroblastoma cells: simultaneous down-regulation by phorbol esters and desensitization of their inhibition of muscarinic receptor function. J Pharmacol Exp Ther. 1988 Jan;244(1):41–50. [PubMed] [Google Scholar]
  23. Lefkowitz R. J., Caron M. G. Adrenergic receptors. Models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem. 1988 Apr 15;263(11):4993–4996. [PubMed] [Google Scholar]
  24. Liles W. C., Hunter D. D., Meier K. E., Nathanson N. M. Activation of protein kinase C induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells. J Biol Chem. 1986 Apr 25;261(12):5307–5313. [PubMed] [Google Scholar]
  25. Manolopoulos V. G., Pipili-Synetos E., Den Hertog A., Nelemans A. Inositol phosphates formed in rat aorta after alpha 1-adrenoceptor stimulation are inhibited by forskolin. Eur J Pharmacol. 1991 May 25;207(1):29–36. doi: 10.1016/s0922-4106(05)80034-3. [DOI] [PubMed] [Google Scholar]
  26. McAtee P., Dawson G. Rapid dephosphorylation of protein kinase C substrates by protein kinase A activators results from inhibition of diacylglycerol release. J Biol Chem. 1989 Jul 5;264(19):11193–11199. [PubMed] [Google Scholar]
  27. McDaniel N. L., Rembold C. M., Richard H. M., Murphy R. A. Cyclic AMP relaxes swine arterial smooth muscle predominantly by decreasing cell Ca2+ concentration. J Physiol. 1991 Aug;439:147–160. doi: 10.1113/jphysiol.1991.sp018661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Neylon C. B., Summers R. J. Inhibition by cAMP of the phosphoinositide response to alpha 1-adrenoceptor stimulation in rat kidney. Eur J Pharmacol. 1988 Apr 13;148(3):441–444. doi: 10.1016/0014-2999(88)90124-0. [DOI] [PubMed] [Google Scholar]
  29. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  30. Olashaw N. E., Pledger W. J. Epidermal growth factor stimulates formation of inositol phosphates in BALB/c/3T3 cells pretreated with cholera toxin and isobutylmethylxanthine. J Biol Chem. 1988 Jan 25;263(3):1111–1114. [PubMed] [Google Scholar]
  31. Orellana S. A., Solski P. A., Brown J. H. Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J Biol Chem. 1985 May 10;260(9):5236–5239. [PubMed] [Google Scholar]
  32. Rhee S. G., Suh P. G., Ryu S. H., Lee S. Y. Studies of inositol phospholipid-specific phospholipase C. Science. 1989 May 5;244(4904):546–550. doi: 10.1126/science.2541501. [DOI] [PubMed] [Google Scholar]
  33. Rosenbaum L. C., Malencik D. A., Anderson S. R., Tota M. R., Schimerlik M. I. Phosphorylation of the porcine atrial muscarinic acetylcholine receptor by cyclic AMP dependent protein kinase. Biochemistry. 1987 Dec 15;26(25):8183–8188. doi: 10.1021/bi00399a024. [DOI] [PubMed] [Google Scholar]
  34. Ryu S. H., Kim U. H., Wahl M. I., Brown A. B., Carpenter G., Huang K. P., Rhee S. G. Feedback regulation of phospholipase C-beta by protein kinase C. J Biol Chem. 1990 Oct 15;265(29):17941–17945. [PubMed] [Google Scholar]
  35. Scherer N. M., Nathanson N. M. Differential regulation by agonist and phorbol ester of cloned m1 and m2 muscarinic acetylcholine receptors in mouse Y1 adrenal cells and in Y1 cells deficient in cAMP-dependent protein kinase. Biochemistry. 1990 Sep 11;29(36):8475–8483. doi: 10.1021/bi00488a039. [DOI] [PubMed] [Google Scholar]
  36. Secrest R. J., Lucaites V. L., Mendelsohn L. G., Cohen M. L. Protein kinase C translocation in rat stomach fundus: effects of serotonin, carbamylcholine and phorbol dibutyrate. J Pharmacol Exp Ther. 1991 Jan;256(1):103–109. [PubMed] [Google Scholar]
  37. Serra M., Smith T. L., Yamamura H. I. Phorbol esters alter muscarinic receptor binding and inhibit polyphosphoinositide breakdown in human neuroblastoma (SH-SY5Y) cells. Biochem Biophys Res Commun. 1986 Oct 15;140(1):160–166. doi: 10.1016/0006-291x(86)91071-5. [DOI] [PubMed] [Google Scholar]
  38. Shifrin G. S., Klein W. L. Regulation of muscarinic acetylcholine receptor concentration in cloned neuroblastoma cells. J Neurochem. 1980 Apr;34(4):993–999. doi: 10.1111/j.1471-4159.1980.tb09676.x. [DOI] [PubMed] [Google Scholar]
  39. Siman R. G., Klein W. L. Cholinergic activity regulates muscarinic receptors in central nervous system cultures. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4141–4145. doi: 10.1073/pnas.76.8.4141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith T. K., Reed J. B., Sanders K. M. Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. Am J Physiol. 1987 Feb;252(2 Pt 1):C215–C224. doi: 10.1152/ajpcell.1987.252.2.C215. [DOI] [PubMed] [Google Scholar]
  41. Somlyo A. P., Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J. 1989 Sep;3(11):2266–2276. doi: 10.1096/fasebj.3.11.2506092. [DOI] [PubMed] [Google Scholar]
  42. Watson S. P., McConnell R. T., Lapetina E. G. The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem. 1984 Nov 10;259(21):13199–13203. [PubMed] [Google Scholar]
  43. Zhang L. B., Buxton I. L. Muscarinic receptors in canine colonic circular smooth muscle. II. Signal transduction pathways. Mol Pharmacol. 1991 Dec;40(6):952–959. [PubMed] [Google Scholar]
  44. Zhang L. B., Horowitz B., Buxton I. L. Muscarinic receptors in canine colonic circular smooth muscle. I. Coexistence of M2 and M3 subtypes. Mol Pharmacol. 1991 Dec;40(6):943–951. [PubMed] [Google Scholar]
  45. el-Fakahany E. E., Alger B. E., Lai W. S., Pitler T. A., Worley P. F., Baraban J. M. Neuronal muscarinic responses: role of protein kinase C. FASEB J. 1988 Jul;2(10):2575–2583. doi: 10.1096/fasebj.2.10.2838363. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES